• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Maximal Oxygen Consumption Rates in One-Leg and Two-Leg Exercise: A Theoretical Model

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_bme_0025_sip1_w.pdf
    Size:
    31.43Mb
    Format:
    PDF
    Download
    Author
    Patel, Deepa Praful
    Issue Date
    2011
    Advisor
    Secomb, Timothy
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The goal of this project was to create a theoretical model to predict maximal oxygen consumption rates in one-leg and two-leg exercise. A MATLAB code was developed to simulate both capillary-level oxygen transport (in the legs) and systemic oxygen transport. Predicted values for oxygen consumption closely matched experimental data. The model was used to explain the trend of a lower maximal oxygen consumption rate in two-leg exercise compared to one-leg exercise. As activity increases from rest to one-leg exercise to two-leg exercise, the oxygen demand of the active components, the cardiac output, and the blood flow rate also increase. However, the fraction of cardiac output to the active leg(s) decreases when the second leg is activated. At the capillary level, the oxygen extraction is increased at the arteriolar end of each capillary, resulting in regions of hypoxic tissue towards the venous end. Venous oxygen saturation is decreased, leading to lower venous P02 returning to the lungs. The increased cardiac output decreases the time that the deoxygenated blood has in contact with the alveoli. As a result, arterial P 02 for blood exiting the lungs is lower. This decreases the pressure gradient between the tissue and the capillary and limits diffusive transport. In summary, the reduction of oxygen consumption rate per unit muscle mass in two-leg exercise relative to one-leg exercise is accounted for quantitatively by the model and shown to result from the combined effects of reduced flow and reduced oxygen saturation of blood to each leg in two-leg exercise.
    Type
    text
    Thesis-Reproduction (electronic)
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Biomedical Engineering
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.