Ultrafast Rydberg-state dissociation in oxygen: Identifying the role of multielectron excitations
Name:
PhysRevA.99.063403.pdf
Size:
1.768Mb
Format:
PDF
Description:
Final Published Version
Publisher
AMER PHYSICAL SOCCitation
Plunkett, A., Harkema, N., Lucchese, R. R., McCurdy, C. W., & Sandhu, A. (2019). Ultrafast Rydberg-state dissociation in oxygen: Identifying the role of multielectron excitations. Physical Review A, 99(6), 063403.Journal
PHYSICAL REVIEW ARights
© 2019 American Physical Society.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
We investigated the fragmentation dynamics of highly excited states of molecular oxygen using femtosecond transient photoelectron spectroscopy. An extreme ultraviolet (XUV) pulse populates the autoionizing Rydberg series converging to O-2(+) c(4)Sigma(-)(u), and a femtosecond near-infrared (IR) pulse was used to photoionize these states as they dissociate. Monitoring the differential photoelectron spectra as a function of time delay allowed us to obtain the relaxation lifetimes of these Rydberg states. We observed a photoelectron signal corresponding to the formation of a 4p excited atomic oxygen fragment, which is not an expected dissociation product of the (O-2(+) c(4)Sigma(-)(u))nl sigma(g) Rydberg series. Analysis of the time-dependent photoelectron spectra and photoionization calculations indicate that this fragment results from a previously unexplored (O-2(+) (4)Pi(g))4p repulsive state and that, contrary to expectations, this multielectron excitation pathway presents a substantial cross section. Our study demonstrates that two-color time-resolved differential photoelectron spectroscopy is an excellent tool to study the fragmentation dynamics of such multielectron excited states, which are not easily probed by other means.ISSN
2469-9926EISSN
2469-9934Version
Final published versionSponsors
US Army Research Laboratory; U.S. Army Research Office [W911NF-14-1-0383]; National Science Foundation (NSF) [PHY-1505556]; U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [DE-SC0018251]; US Department of Energy Chemical Sciences, Geosciences, and Biosciences Division [DE-AC02-05CH11231]ae974a485f413a2113503eed53cd6c53
10.1103/physreva.99.063403