• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Ultrafast Rydberg-state dissociation in oxygen: Identifying the role of multielectron excitations

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    PhysRevA.99.063403.pdf
    Size:
    1.768Mb
    Format:
    PDF
    Description:
    Final Published Version
    Download
    Author
    Plunkett, Alexander
    Harkema, Nathan
    Lucchese, Robert R.
    McCurdy, C. William
    Sandhu, Arvinder
    Affiliation
    Univ Arizona, Dept Phys
    Issue Date
    2019-06-06
    
    Metadata
    Show full item record
    Publisher
    AMER PHYSICAL SOC
    Citation
    Plunkett, A., Harkema, N., Lucchese, R. R., McCurdy, C. W., & Sandhu, A. (2019). Ultrafast Rydberg-state dissociation in oxygen: Identifying the role of multielectron excitations. Physical Review A, 99(6), 063403.
    Journal
    PHYSICAL REVIEW A
    Rights
    © 2019 American Physical Society.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    We investigated the fragmentation dynamics of highly excited states of molecular oxygen using femtosecond transient photoelectron spectroscopy. An extreme ultraviolet (XUV) pulse populates the autoionizing Rydberg series converging to O-2(+) c(4)Sigma(-)(u), and a femtosecond near-infrared (IR) pulse was used to photoionize these states as they dissociate. Monitoring the differential photoelectron spectra as a function of time delay allowed us to obtain the relaxation lifetimes of these Rydberg states. We observed a photoelectron signal corresponding to the formation of a 4p excited atomic oxygen fragment, which is not an expected dissociation product of the (O-2(+) c(4)Sigma(-)(u))nl sigma(g) Rydberg series. Analysis of the time-dependent photoelectron spectra and photoionization calculations indicate that this fragment results from a previously unexplored (O-2(+) (4)Pi(g))4p repulsive state and that, contrary to expectations, this multielectron excitation pathway presents a substantial cross section. Our study demonstrates that two-color time-resolved differential photoelectron spectroscopy is an excellent tool to study the fragmentation dynamics of such multielectron excited states, which are not easily probed by other means.
    ISSN
    2469-9926
    EISSN
    2469-9934
    DOI
    10.1103/physreva.99.063403
    Version
    Final published version
    Sponsors
    US Army Research Laboratory; U.S. Army Research Office [W911NF-14-1-0383]; National Science Foundation (NSF) [PHY-1505556]; U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [DE-SC0018251]; US Department of Energy Chemical Sciences, Geosciences, and Biosciences Division [DE-AC02-05CH11231]
    ae974a485f413a2113503eed53cd6c53
    10.1103/physreva.99.063403
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.