Analytical model of resonant electromagnetic dipole-quadrupole coupling in nanoparticle arrays
Name:
PhysRevB.99.195444.pdf
Size:
3.068Mb
Format:
PDF
Description:
Final Published Version
Publisher
AMER PHYSICAL SOCCitation
Babicheva, V. E., & Evlyukhin, A. B. (2019). Analytical model of resonant electromagnetic dipole-quadrupole coupling in nanoparticle arrays. Physical Review B, 99(19), 195444.Journal
PHYSICAL REVIEW BRights
© 2019 American Physical Society.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
An analytical model for investigations of multipole coupling effects in the finite and infinite nanoparticle arrays supporting electromagnetic resonances is presented and discussed. This model considers the contributions of both electric and magnetic modes excited in the nanoparticles, including electric and magnetic dipoles and electric and magnetic quadrupoles. The magnetic quadrupole propagator (Green's tensor) that describes the electromagnetic field generated by a point magnetic quadrupole source in all wave zones is derived. As an example, we apply the developed model to study infinite two-dimensional rectangular periodic arrays of spherical silicon nanoparticles supporting the dipole and quadrupole resonant responses. The correctness and accuracy of the analytical model are confirmed by the agreement of its results with the results of full-wave numerical simulations. Using the developed model, we show the electromagnetic coupling between electric dipole and magnetic quadrupole moments as well as between magnetic dipole and electric quadrupole moments even for the case of an infinite rectangular periodic array of spherical nanoparticles. The strong suppression of the dipole or quadrupole moment due to the coupling effects is demonstrated and discussed for spherical nanoparticle arrays. The analytical expressions for the reflection and transmission coefficients written with the effective dipole and quadrupole polarizabilities are derived for normal light incidences and zero-order diffraction. The derived expressions are applied to explain the lattice anapole (invisibility) states when the incident light is transmitted unperturbed through the silicon nanoparticle array. The important role of dipole and quadrupole excitations in scattering compensation resulting in the lattice anapole effect is explicitly demonstrated. The presented approach can be used for designing metasurfaces and further utilizing them in developing ultrathin functional optical elements.ISSN
2469-9950EISSN
2469-9969Version
Final published versionSponsors
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy within the Cluster of Excellence PhoenixD [EXC 2122, 390833453]; Air Force Office of Scientific Research [FA9550-19-1-0032]ae974a485f413a2113503eed53cd6c53
10.1103/physrevb.99.195444