• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Soil Microbiome Dynamics During Pyritic Mine Tailing Phytostabilization: Understanding Microbial Bioindicators of Soil Acidification

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    fmicb-10-01211.pdf
    Size:
    1.604Mb
    Format:
    PDF
    Description:
    Final Published Version
    Download
    Author
    Hottenstein, John D.
    Neilson, Julie W.
    Gil-Loaiza, Juliana
    Root, Robert A. cc
    White, Scott A.
    Chorover, Jon
    Maier, Raina M.
    Affiliation
    Univ Arizona, Dept Soil Water & Environm Sci
    Issue Date
    2019-06-05
    Keywords
    phytostabilization
    mine tailings
    acid mine drainage
    plant growth-promoting bacteria
    iron-oxidizing bacteria
    sulfur-oxidizing bacteria
    iron-reducing bacteria
    mine tailing acidification
    
    Metadata
    Show full item record
    Publisher
    Frontiers Media SA
    Citation
    Hottenstein JD, Neilson JW, Gil-Loaiza J, Root RA, White SA, Chorover J and Maier RM (2019) Soil Microbiome Dynamics During Pyritic Mine Tailing Phytostabilization: Understanding Microbial Bioindicators of Soil Acidification. Front. Microbiol. 10:1211. doi: 10.3389/fmicb.2019.01211
    Journal
    FRONTIERS IN MICROBIOLOGY
    Rights
    Copyright © 2019 Hottenstein, Neilson, Gil-Loaiza, Root, White, Chorover and Maier. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    Challenges to the reclamation of pyritic mine tailings arise from in situ acid generation that severely constrains the growth of natural revegetation. While acid mine drainage (AMD) microbial communities are well-studied under highly acidic conditions, fewer studies document the dynamics of microbial communities that generate acid from pyritic material under less acidic conditions that can allow establishment and support of plant growth. This research characterizes the taxonomic composition dynamics of microbial communities present during a 6-year compost-assisted phytostabilization field study in extremely acidic pyritic mine tailings. A complementary microcosm experiment was performed to identify successional community populations that enable the acidification process across a pH gradient. Taxonomic profiles of the microbial populations in both the field study and microcosms reveal shifts in microbial communities that play pivotal roles in facilitating acidification during the transition between moderately and highly acidic conditions. The potential co-occurrence of organoheterotrophic and lithoautotrophic energy metabolisms during acid generation suggests the importance of both groups in facilitating acidification. Taken together, this research suggests that key microbial populations associated with pH transitions could be used as bioindicators for either sustained future plant growth or for acid generation conditions that inhibit further plant growth.
    Note
    Open access journal
    ISSN
    1664-302X
    DOI
    10.3389/fmicb.2019.01211
    Version
    Final published version
    Sponsors
    National Institute of Environmental and Health Sciences (NIEHS) Superfund Research Program (SRP) [P42 ES004940]
    ae974a485f413a2113503eed53cd6c53
    10.3389/fmicb.2019.01211
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.