We are upgrading the repository! A content freeze is in effect until December 6th, 2024 - no new submissions will be accepted; however, all content already published will remain publicly available. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available soon. Note that any new user accounts created after September 22, 2024 will need to be recreated by the user in November after our migration is completed.
Validation of a Stochastic Discrete Event Model Predicting Virus Concentration on Nurse Hands
Name:
discrete_event_GOJO_forRiskAna ...
Size:
515.8Kb
Format:
PDF
Description:
Final Accepted Manuscript
Affiliation
Univ Arizona, Dept Community Environm & Policy, Mel & Enid Zuckerman Coll Publ HlthIssue Date
2019-08-01
Metadata
Show full item recordPublisher
WILEYCitation
Wilson, A. M., Reynolds, K. A., Verhougstraete, M. P. and Canales, R. A. (2019), Validation of a Stochastic Discrete Event Model Predicting Virus Concentration on Nurse Hands. Risk Analysis, 39: 1812-1824. doi:10.1111/risa.13281Journal
RISK ANALYSISRights
© 2019 Society for Risk Analysis.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Understanding healthcare viral disease transmission and the effect of infection control interventions will inform current and future infection control protocols. In this study, a model was developed to predict virus concentration on nurses' hands using data from a bacteriophage tracer study conducted in Tucson, Arizona, in an urgent care facility. Surfaces were swabbed 2 hours, 3.5 hours, and 6 hours postseeding to measure virus spread over time. To estimate the full viral load that would have been present on hands without sampling, virus concentrations were summed across time points for 3.5- and 6-hour measurements. A stochastic discrete event model was developed to predict virus concentrations on nurses' hands, given a distribution of virus concentrations on surfaces and expected frequencies of hand-to-surface and orifice contacts and handwashing. Box plots and statistical hypothesis testing were used to compare the model-predicted and experimentally measured virus concentrations on nurses' hands. The model was validated with the experimental bacteriophage tracer data because the distribution for model-predicted virus concentrations on hands captured all observed value ranges, and interquartile ranges for model and experimental values overlapped for all comparison time points. Wilcoxon rank sum tests showed no significant differences in distributions of model-predicted and experimentally measured virus concentrations on hands. However, limitations in the tracer study indicate that more data are needed to instill more confidence in this validation. Next model development steps include addressing viral concentrations that would be found naturally in healthcare environments and measuring the risk reductions predicted for various infection control interventions.Note
12 month embargo; published online: 13 February 2019ISSN
0272-4332PubMed ID
30759318Version
Final accepted manuscriptSponsors
GOJO Industries, Inc.; Western Alliance to Expand Student Opportunities (WAESO) Louis Stokes Alliance for Minority Participation (LSAMP) Bridge to Doctorate (BD) National Science Foundation (NSF) [1608928]ae974a485f413a2113503eed53cd6c53
10.1111/risa.13281
Scopus Count
Collections
Related articles
- Control of the spread of viruses in a long-term care facility using hygiene protocols.
- Authors: Sassi HP, Sifuentes LY, Koenig DW, Nichols E, Clark-Greuel J, Wong LF, McGrath K, Gerba CP, Reynolds KA
- Issue date: 2015 Jul 1
- Impact of a hygiene intervention on virus spread in an office building.
- Authors: Kurgat EK, Sexton JD, Garavito F, Reynolds A, Contreras RD, Gerba CP, Leslie RA, Edmonds-Wilson SL, Reynolds KA
- Issue date: 2019 Apr
- Use of a Hand Sanitizing Wipe for Reducing Risk of Viral Illness in the Home.
- Authors: Tamimi AH, Edmonds-Wilson SL, Gerba CP
- Issue date: 2015 Dec
- Transmission of viruses via contact in ahousehold setting: experiments using bacteriophage straight phiX174 as a model virus.
- Authors: Rheinbaben F, Schünemann S, Gross T, Wolff MH
- Issue date: 2000 Sep
- Assessing virus infection probability in an office setting using stochastic simulation.
- Authors: Contreras RD, Wilson AM, Garavito F, Sexton JD, Reynolds KA, Canales RA
- Issue date: 2020 Jan