• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Interstellar Molecules in Extreme and Circumstellar Environments

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_17284_sip1_m.pdf
    Size:
    18.81Mb
    Format:
    PDF
    Download
    Author
    Anderson, Julie Katelyn
    Issue Date
    2019
    Keywords
    astrochemistry
    circumstellar chemistry
    ISM: abundances
    ISM: molecules
    millimeter-wave direct absorption
    NGC 7027
    Advisor
    Ziurys, Lucy M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Chemical principles and tools were used to study three phases of the interstellar medium: circumstellar envelopes, shocks from a planetary nebula, and an exploding region of dense gas. First, theoretical principles and instrumentation for the astrochemical research is presented. Then, the chemistry of circumstellar envelopes is investigated. Several microwave and millimeters transitions for the rotational spectrum of CCN (X2Π1/2) were measured in the lab allowing for the long-searched for detection of CCN in the circumstellar envelope of IRC+10216. The radial abundance of CCN and related species was modeled to elucidate the organic chemistries of the outer envelope. Additionally, PN and PO were detected in the envelopes of three O-rich stars, IK Tau, R Cas, and TX Cam. The radial abundance for PN and PO was modelled in these stars as well as for the O-rich supergiants VY CMa and NML Cyg. In all sources, PO and PN had an abundance ratio of roughly 10:1 and depleted near 100 R*. PN and PO likely participate in chemical networks of the inner envelope for O-rich stars, possibly seeding out onto grains in extended regions from the stars. Finally, extreme interstellar environments were chemically probed. The appearance of CH+ around the young planetary nebula NGC 7027 had been an enigma. An investigation of emission from CH+, C+, and CO reveal that CH+ is likely generated in the H2* shock region, revealing complexity in the organic chemistry of planetary nebulae. Spectral maps of Band 8 and Band 9 emission from HCN, HCO+, and SiO for the Orion-KL region reveal dense, hot, and shocked molecular gas across the nebula. This region continues to show a complexity of its molecular and physical network, showing that chemistry is as far reaching as are the depths of space.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemistry
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.