• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Efficient Data Acquisition and Parameter Estimation for Gamma-Ray Detectors and Other Sensors

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_17457_sip1_m.pdf
    Size:
    13.73Mb
    Format:
    PDF
    Download
    Author
    Ruiz Gonzalez, Maria del Carmen
    Issue Date
    2019
    Keywords
    Analog-to-digital conversion
    Fisher information
    Gamma-ray detection
    Maximum-likelihood estimation
    Medical imaging
    Sigma-delta modulation
    Advisor
    Furenlid, Lars R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Gamma-ray detection is extensively used in areas such as astronomy, nuclear physics, and medical imaging. There are many different ways a gamma-ray can interact with a detector; for instance, it can transfer just a portion of its energy, or it can transfer all its energy, and in both cases produce a complex cascade of ionization events. The amount of information that can be extracted from each event signal depends on the way the data is acquired and the method utilized to estimate gamma-ray parameters. Parameters that can be estimated from the interaction event include the energy deposited, direction, position of interaction, and time of interaction. Energy, concentration, and distribution of the source can then be estimated from this data. We explored the use of Fisher information to quantify the amount of energy and timing information in digitized gamma-ray signals, and a related parameter called the Cramer-Rao lower bound to estimate the best resolution a detector can achieve. We developed an energy and timing estimation method based on maximum-likelihood. Based on the Fisher information analysis and maximum-likelihood estimation results, we developed a novel analog-to-digital conversion method for gamma-ray signals based on sigma-delta modulation that maintains statistical information on gamma-ray waveforms, but is less complex and less costly compared to conventional analog-to-digital converters. Lastly, we designed, built, and characterized a sigma-delta-modulation-based read-out electronics board for gamma-ray cameras. The novel read-out architecture allows to implement waveform digitization and acquisition in imaging systems with a large number of channels and with different types of sensors, such as photomultiplier tubes, avalanche photodiodes, and silicon photomultipliers.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Optical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.