Statistical Stellar Mass Corrections for High-z Galaxies Observed with JWST Broadband Filters Due to Template Degeneracies
Name:
Bisigello_2019_ApJS_243_27.pdf
Size:
1.793Mb
Format:
PDF
Description:
Final Published Version
Author
Bisigello, L.
Caputi, K. I.
Colina, L.
Pérez-González, P. G.
Koekemoer, A.
Le Fèvre, O.
Grogin, N.
Nørgaard-Nielsen, H. U.
van der Werf, P.
Affiliation
Univ Arizona, Steward ObservIssue Date
2019-08-01
Metadata
Show full item recordPublisher
IOP PUBLISHING LTDCitation
L. Bisigello et al 2019 ApJS 243 27Rights
Copyright © 2019. The American Astronomical Society. All rights reserved.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Stellar masses in future James Webb Space Telescope (JWST) deep blank fields will be mainly derived by fitting the spectral energy distribution (SED) with theoretical galaxy templates. We investigate the uncertainties and biases of the stellar masses derived by using the LePhare code for SED fitting and the Yggdrasil theoretical templates. We consider a sample of mock galaxies at z = 7-10 with mock JWST observations with S/N-F150W( )>= 10. Our goal is to provide a list of statistical stellar mass corrections to include on the stellar mass derivation for different output galaxy properties and JWST filter combinations to correct for template degeneracies. Median statistical stellar mass corrections vary from -0.83 to 0.87 dex, while 25% (75%) quartiles range from -0.83 (-0.67) to 0.51 (0.88) dex, depending on filter combinations and galaxy models. The most challenging cases are galaxies with nebular emission lines, especially the ones that are wrongly identified as galaxies without, relative dust-free galaxies, and galaxies with small metallicities (i.e., Z = 1/50 Z(circle dot)). The stellar mass estimation of galaxies correctly identified without emission lines is generally fine, except at z = 10 when considering only the eight NIRCam bands, which make the MIRI bands very valuable. We have tested our stellar mass corrections using the public JAGUAR galaxy catalog, deriving that the average discrepancy in the recovered stellar mass distribution decreases by 20%-50% at z > 7 after the correction. We found that without the stellar mass corrections, the number of low-mass galaxies (M* < 10(7) M-circle dot) is overestimated, which can potentially lead to systematic errors in the calculation of the galaxy stellar mass function faint-end slope at high z.ISSN
0067-0049Version
Final published versionSponsors
European Research Council [681627-BUILDUP]; Spanish Government [AYA2015-63650-P]; Spanish Ministry for Science, Innovation and Universities [ESP2017-83197]ae974a485f413a2113503eed53cd6c53
10.3847/1538-4365/ab2911