Show simple item record

dc.contributor.authorSzutu, D. J.
dc.contributor.authorPapuga, S. A.
dc.date.accessioned2019-09-26T00:13:40Z
dc.date.available2019-09-26T00:13:40Z
dc.date.issued2019-07-12
dc.identifier.citationSzutu, D. J., & Papuga, S. A. (2019). Year‐round transpiration dynamics linked with deep soil moisture in a warm desert shrubland. Water Resources Research, 55, 5679–5695. https://doi.org/10.1029/2018WR023990en_US
dc.identifier.issn0043-1397
dc.identifier.doi10.1029/2018wr023990
dc.identifier.urihttp://hdl.handle.net/10150/634593
dc.description.abstractEcohydrological processes in semiarid shrublands and other dryland ecosystems are sensitive to discrete pulses of precipitation. Anticipated changes in the frequency and magnitude of precipitation events are expected to impact the spatial and temporal distribution of soil moisture in these drylands, thereby impacting their ecohydrological processes. Recent field studies have shown that in dryland ecosystems, transpiration dynamics and plant productivity are largely a function of deep soil moisture available after large precipitation events, regardless of where the majority of plant roots occur. However, the strength of this relationship and how and why it varies throughout the year remains unclear. We present eddy covariance, soil moisture, and sap flow measurements taken over an 18-month period in conjunction with an analysis of biweekly precipitation, shallow soil, deep soil, and stem stable water isotope samples from a creosotebush-dominated shrubland ecosystem at the Santa Rita Experimental Range in southern Arizona. Within the context of a hydrologically defined two-layer conceptual framework, our results support that transpiration is associated with the availability of deep soil moisture and that the source of this moisture varies seasonally. Therefore, changes in precipitation pulses that alter the timing and magnitude of the availability of deep soil moisture are expected to have major consequences for dryland ecosystems. Our findings offer insights that can improve the representation of drylands within regional and global models of land surface atmosphere exchange and their linkages to the hydrologic cycle.en_US
dc.description.sponsorshipNSF CAREER award [1755722, EAR-1255013]en_US
dc.language.isoenen_US
dc.publisherAMER GEOPHYSICAL UNIONen_US
dc.rightsCopyright © 2019. American Geophysical Union. All Rights Reserved.en_US
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.titleYear‐Round Transpiration Dynamics Linked With Deep Soil Moisture in a Warm Desert Shrublanden_US
dc.typeArticleen_US
dc.contributor.departmentUniv Arizona, Sch Nat Resources & Environmen_US
dc.identifier.journalWATER RESOURCES RESEARCHen_US
dc.description.note6 month embargo; published online: 12 July 2019en_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.source.volume55
dc.source.issue7
dc.source.beginpage5679-5695


Files in this item

Thumbnail
Name:
Szutu_et_al-2019-Water_Resourc ...
Size:
2.005Mb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record