Name:
Eyre_et_al-2019-Geophysical_Re ...
Size:
8.374Mb
Format:
PDF
Description:
Final Published Version
Affiliation
Univ Arizona, Dept Hydrol & Atmospher SciIssue Date
2019-07-27
Metadata
Show full item recordPublisher
AMER GEOPHYSICAL UNIONCitation
Reeves Eyre, J. E. J., Van Roekel, L., Zeng, X., Brunke, M. A., & Golaz, J.-C. (2019). Ocean barrier layers in theenergy exascale Earth system model. Geophysical Research Letters, 46, 8234–8243. https://doi.org/10.1029/2019GL083591Journal
GEOPHYSICAL RESEARCH LETTERSRights
This article has been contributed to by US Government employees and their work is in the public domain in the USA.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Ocean barrier layers (BLs) separate the mixed layer from the top of the thermocline and are able to insulate the mixed layer from entrainment of cold thermocline water. Here, we provide the first global BL assessment in E3SMv1 and two other Earth system models. Compared to observations, models reproduce the global distributions as semipermanent features in some tropical regions and seasonal features elsewhere. However, model BLs are generally too thin in tropical regions and too thick in higher latitudes. BLs' ability to insulate the ocean surface from entrainment of cold thermocline water is most apparent in the tropics. Thus, E3SMv1s BL thickness biases most affect entrainment here. Tropical BLT biases appear driven by atmosphere biases, mainly through the effect of precipitation minus evaporation on mixed layer depth. At higher latitudes BL thickness biases are dominated by thermocline depth errors related to ocean circulation and vertical mixing. Plain Language Summary Most regions of the Earth's oceans exhibit a thermocline, separating relatively warm surface water from colder water below. In some regions, salinity varies sharply within the warm layer, displaying a fresh layer at the surface and a salty warm layer, termed a barrier layer, between the surface layer and the thermocline. Here we assess barrier layers in three Earth system models, focusing on the Energy Exascale Earth System Model. We show the following: Earth system models can capture barrier layers, albeit with errors in thickness; barrier layers affect exchange of water and heat between the surface and the thermocline in the tropics, but not at midlatitudes; and barrier layer model errors are not purely due to the ocean model component but are caused by several model components (ocean, atmosphere, land, and river runoff) and interactions between them.Note
Public domain articleISSN
0094-8276Version
Final published versionSponsors
Energy Exascale Earth System Model (E3SM) project - U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research; DOE [SC0016533, DE-AC52-07NA27344]; DOE through the Los Alamos National Laboratory [89233218CNA000001]; DOE Office of Science User Facility [DE-AC02-05CH11231]; National Science Foundationae974a485f413a2113503eed53cd6c53
10.1029/2019gl083591
Scopus Count
Collections
Except where otherwise noted, this item's license is described as This article has been contributed to by US Government employees and their work is in the public domain in the USA.