Show simple item record

dc.contributor.authorBranford, Dominic
dc.contributor.authorGagatsos, Christos N.
dc.contributor.authorGrover, Jai
dc.contributor.authorHickey, Alexander J.
dc.contributor.authorDatta, Animesh
dc.date.accessioned2019-09-27T01:56:49Z
dc.date.available2019-09-27T01:56:49Z
dc.date.issued2019-08-30
dc.identifier.citationBranford, D., Gagatsos, C., Grover, J., Hickey, A., & Datta, A. (2019). Quantum enhanced estimation of diffusion. 100(2), Phys. Rev. A 100, 022129 (2019).en_US
dc.identifier.issn2469-9926
dc.identifier.doi10.1103/physreva.100.022129
dc.identifier.urihttp://hdl.handle.net/10150/634630
dc.description.abstractMomentum diffusion is a possible mechanism for driving macroscopic quantum systems towards classical behaviour. Experimental tests of this hypothesis rely on a precise estimation of the strength of this diffusion. We show that quantum-mechanical squeezing can offer significant improvements, which can be attained by general homodyne measurements including position measurement. With 10 dB of squeezing, experiments would require a tenth of proposed free-fall times. Quantum measurements---beyond study of position---could also allow for a more precise estimation. Our results suggest the potential for quantum enhanced estimation of heating and diffusive dynamics more generally.en_US
dc.description.sponsorshipEuropean Space Agency's Ariadna scheme [17-1201a]; U.K. EPSRC [EP/K04057X/2]; U.K. National Quantum Technologies Programme [EP/M01326X/1, EP/M013243/1]; COST Action QTSpace [CA15220]en_US
dc.language.isoenen_US
dc.publisherPHYSICAL REVIEW Aen_US
dc.rightsCopyright © 2019 American Physical Society.en_US
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.titleQuantum enhanced estimation of diffusionen_US
dc.typeArticleen_US
dc.contributor.departmentUniv Arizona, Coll Opt Scien_US
dc.identifier.journalAMER PHYSICAL SOCen_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.eprint.versionFinal published versionen_US
dc.source.volume100
dc.source.issue2
refterms.dateFOA2019-09-27T01:56:49Z


Files in this item

Thumbnail
Name:
PhysRevA.100.022129.pdf
Size:
2.076Mb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record