High gas-to-dust size ratio indicating efficient radial drift in the mm-faint CX Tauri disk
Author
Facchini, S.van Dishoeck, E. F.

Manara, C. F.
Tazzari, M.
Maud, L.
Cazzoletti, P.
Rosotti, G.
van der Marel, N.
Pinilla, P.

Clarke, C. J.
Affiliation
Univ Arizona, Steward Observ, Dept AstronIssue Date
2019-06-12
Metadata
Show full item recordPublisher
EDP SCIENCES S ACitation
Facchini, S., van Dishoeck, E. F., Manara, C. F., Tazzari, M., Maud, L., Cazzoletti, P., ... & Clarke, C. J. (2019). High gas-to-dust size ratio indicating efficient radial drift in the mm-faint CX Tauri disk. Astronomy & Astrophysics, 626, L2.Journal
ASTRONOMY & ASTROPHYSICSRights
Copyright © ESO 2019.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
The large majority of protoplanetary disks have very compact continuum emission (less than or similar to 15 AU) at millimeter wavelengths. However, high angular resolution observations that resolve these small disks are still lacking, due to their intrinsically fainter emission compared with large bright disks. In this Letter we present 1.3 mm ALMA data of the faint disk (similar to 10 mJy) orbiting the TTauri star CX Tau at a resolution of similar to 40 mas, similar to 5 AU in diameter. The millimeter dust disk is compact, with a 68% enclosing flux radius of 14 AU, and the intensity profile exhibits a sharp drop between 10 and 20 AU, and a shallow tail between 20 and 40 AU. No clear signatures of substructure in the dust continuum are observed, down to the same sensitivity level of the DSHARP large program. However, the angular resolution does not allow us to detect substructures on the scale of the disk aspect ratio in the inner regions. The radial intensity profile closely resembles the inner regions of more extended disks imaged at the same resolution in DSHARP, but with no rings present in the outer disk. No inner cavity is detected, even though the disk has been classified as a transition disk from the spectral energy distribution in the near-infrared. The emission of (CO)-C-12 is much more extended, with a 68% enclosing flux radius of 75 AU. The large difference of the millimeter dust and gas extents (>5) strongly points to radial drift, and closely matches the predictions of theoretical models.ISSN
1432-0746Version
Final published versionSponsors
DISCSIM project - European Research Council under ERC-2013-ADG [341137]; UK Science and Technology research Council (STFC); Netherlands Organisation for Scientific Research (NWO) [016. Veni. 192.233]; Netherlands Research School for Astronomy (NOVA); European Union [823823]; ESO fellowship; ALMA [2016.1.00715]ae974a485f413a2113503eed53cd6c53
10.1051/0004-6361/201935496