The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project
Name:
Porth_2019_ApJS_243_26.pdf
Size:
18.85Mb
Format:
PDF
Description:
Final Published Version
Author
Chan, Chi-kwanBall, David
Christian, Pierre
Jannuzi, Buell T.
Kim, Junhan
Marrone, Daniel P.
Medeiros, Lia
Özel, Feryal
Psaltis, Dimitrios
Rose, Mel
Roshanineshat, Arash
Trent, Tyler
Affiliation
Univ Arizona, Dept AstronUniv Arizona, Data Sci Inst
Univ Arizona, Steward Observ
Issue Date
2019-08-01Keywords
black hole physicsmagnetic fields
magnetohydrodynamics (MHD)
methods: numerical
relativistic processes
Metadata
Show full item recordPublisher
IOP PUBLISHING LTDCitation
Oliver Porth et al 2019 ApJS 243 26Rights
Copyright © 2019. The American Astronomical Society. All rights reserved.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Recent developments in compact object astrophysics, especially the discovery of merging neutron stars by LIGO, the imaging of the black hole in M87 by the Event Horizon Telescope, and high- precision astrometry of the Galactic Center at close to the event horizon scale by the GRAVITY experiment motivate the development of numerical source models that solve the equations of general relativistic magnetohydrodynamics (GRMHD). Here we compare GRMHD solutions for the evolution of a magnetized accretion flow where turbulence is promoted by the magnetorotational instability from a set of nine GRMHD codes: Athena++, BHAC, Cosmos++, ECHO, H-AMR, iharm3D, HARM-Noble, IllinoisGRMHD, and KORAL. Agreement among the codes improves as resolution increases, as measured by a consistently applied, specially developed set of code performance metrics. We conclude that the community of GRMHD codes is mature, capable, and consistent on these test problems.ISSN
0067-0049Version
Final published versionSponsors
National Science Foundation (NSF) [OISE-1743747, AST-1816420, AST-0096454, AST-0352953, AST-0521233, AST-0705062, AST-0905844, AST-0922984, AST-1126433, AST-1140030, DGE-1144085]; NSF via XSEDE resources [TG-AST080026N]; PRIN-MIUR project Multi-scale Simulations of High-Energy Astrophysical Plasmas [2015L5EE2Y]; INFN-TEONGRAV initiative; NSF PRAC award at the Blue Waters sustained-petascale computing project [1615281, OAC-1811605, NSF OAC-1515969, OAC-1811228]; Netherlands Organization for Scientific Research (NWO) VICI grant [639.043.513]; NWO computing grant [16431]; ERC synergy grant "BlackHoleCam: Imaging the Event Horizon of Black Holes" [610058]; European Research Council [715368-MagBURST]; Gauss Centre for Supercomputing e.V; NSF [AST-1616185, ACI-1548562, DBI-0735191, DBI-1265383, DBI-1743442]; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Academy of Finland [274477, 284495, 312496]; European Commission Framework Programme Horizon 2020 Research and Innovation action [731016]; John Templeton Foundation [60477]; Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT, Chile) [PIA ACT172033, Fondecyt 1171506, BASAL AFB-170002, ALMA-conicyt 31140007]; Consejo Nacional de Ciencia y Tecnologia (CONACYT, Mexico) [104497, 275201, 279006, 281692]; Direccion General de Asuntos del Personal Academico-Universidad Nacional Autonoma de Mexico (DGAPA-UNAM) [IN112417]; European Research Council Synergy Grant "BlackHoleCam: Imaging the Event Horizon of Black Holes" [610058]; Generalitat Valenciana [APOSTD/2018/177]; Gordon and Betty Moore Foundation [GBMF-3561, GBMF-5278]; Jansky Fellowship program of the National Radio Astronomy Observatory (NRAO); Japanese Government (Monbukagakusho: MEXT) Scholarship; Japan Society for the Promotion of Science (JSPS) [JP17J08829]; Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS) [QYZDJ-SSW-SLH057, QYZDJ-SSW-SYS008]; Leverhulme Trust Early Career Research Fellowship; MEXT/JSPS KAKENHI [18KK0090, JP18K13594, JP18K03656, JP18H03721, 18K03709, 18H01245, 25120007]; MIT International Science and Technology Initiatives (MISTI) Funds; Ministry of Science and Technology (MOST) of Taiwan [105-2112-M-001-025-MY3, 106-2112-M-001-011, 106-2119-M-001-027, 107-2119-M-001-017, 107-2119-M-001-020, 107-2119-M-110-005]; National Aeronautics and Space Administration (NASA) [80NSSC17K0649]; National Key Research and Development Program of China [2016YFA0400704, 2016YFA0400702]; Natural Science Foundation of China [11573051, 11633006, 11650110427, 10625314, 11721303, 11725312]; National Research Foundation of Korea [NRF-2015H1A2A1033752, 2015-R1D1A1A01056807, NRF-2015H1D3A1066561]; Netherlands Organization for Scientific Research (NWO) VICI award [639.043.513]; Spinoza Prize [SPI 78-409]; South African Radio Astronomy Observatory (SARAO); Swedish Research Council [2017-00648]; Government of Canada through the Department of Innovation, Science and Economic Development; Province of Ontario through the Ministry of Research, Innovation and Science; Russian Science Foundation [17-12-01029]; Spanish Ministerio de Economia y Competitividad [AYA2015-63939-C2-1-P, AYA2016-80889-P]; State Agency for Research of the Spanish MCIU through the "Center of Excellence Severo Ochoa" award [SEV-2017-0709]; USDOE [89233218CNA000001]; Italian Ministero dell'Istruzione Universita e Ricerca through the grant Progetti Premiali 2012-iALMA [CUP C52I13000140001]; European Union's Horizon 2020 research and innovation programme [730562 RadioNet]; Chandra [TM6-17006X]; CyVerse; Compute Ontario; Calcul Quebec; Compute Canada; NWO Spinoza Prize;[NSF PHY-1125915];[AST-1207704];[AST-1207730];[AST-1207752];[MRI-1228509];[OPP-1248097];[AST-1310896];[AST-1312651];[AST-1337663];[AST-1440254];[AST-1555365];[AST-1715061];[AST-1615796];[AST-1716327]ae974a485f413a2113503eed53cd6c53
10.3847/1538-4365/ab29fd