Assimilation of Satellite-Based Data for Hydrological Mapping of Precipitation and Direct Runoff Coefficient for the Lake Urmia Basin in Iran
Author
Akbari, MahdiHaghighi, Ali Torabi
Aghayi, Mohammad Mahdi
Javadian, Mostafa
Tajrishy, Masoud
Klove, Bjorn
Affiliation
Univ Arizona, Dept Hydrol & Atmospher SciIssue Date
2019-08Keywords
hydrological modelingdownscaling TRMM
direct runoff coefficient
water scarcity
lakes
Urmia
desiccation
land use
ungauged basin
SCS-CN
Kennessey
Metadata
Show full item recordPublisher
MDPICitation
Akbari, M.; Torabi Haghighi, A.; Aghayi, M.M.; Javadian, M.; Tajrishy, M.; Kløve, B. Assimilation of Satellite-Based Data for Hydrological Mapping of Precipitation and Direct Runoff Coefficient for the Lake Urmia Basin in Iran. Water 2019, 11, 1624.Journal
WATERRights
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Water management in arid basins often lacks sufficient hydro-climatological data because, e.g., rain gauges are typically absent at high elevations and inflow to ungauged areas around large closed lakes is difficult to estimate. We sought to improve precipitation and runoff estimation in an arid basin (Lake Urmia, Iran) using methods involving assimilation of satellite-based data. We estimated precipitation using interpolation of rain gauge data by kriging, downscaling the Tropical Rainfall Measuring Mission (TRMM), and cokriging interpolation of in-situ records with Remote Sensing (RS)-based data. Using RS-based data application in estimations gave more precise results, by compensating for lack of data at high elevations. Cokriging interpolation of rain gauges by TRMM and Digitized Elevation Model (DEM) gave 4-9 mm lower Root Mean Square Error (RMSE) in different years compared with kriging. Downscaling TRMM improved its accuracy by 14 mm. Using the most accurate precipitation result, we modeled annual direct runoff with Kennessey and Soil Conservation Service Curve Number (SCS-CN) models. These models use land use, permeability, and slope data. In runoff modeling, Kennessey gave higher accuracy. Calibrating Kennessey reduced the Normalized RMSE (NRMSE) from 1 in the standard model to 0.44. Direct runoff coefficient map by 1 km spatial resolution was generated by calibrated Kennessey. Validation by the closest gauges to the lake gave a NRMSE of 0.41 which approved the accuracy of modeling.Note
Open access journalISSN
2073-4441Version
Final published versionSponsors
Urmia Lake Restoration Committee; University of Ouluae974a485f413a2113503eed53cd6c53
10.3390/w11081624
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).