• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Marine Boundary Layer Clouds Associated with Coastally Trapped Disturbances: Observations and Model Simulations

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    jas-d-18-0317.1.pdf
    Size:
    7.942Mb
    Format:
    PDF
    Description:
    Final Published Version
    Download
    Author
    Juliano, Timothy W.
    Coggon, Matthew M.
    Thompson, Gregory cc
    Rahn, David A.
    Seinfeld, John H.
    Sorooshian, Armin
    Lebo, Zachary J.
    Affiliation
    Univ Arizona, Dept Chem & Environm Engn
    Univ Arizona, Dept Hydrol & Atmospher Sci
    Issue Date
    2019-09-11
    Keywords
    North Pacific Ocean
    Marine boundary layer
    Stratiform clouds
    Cloud parameterizations
    Numerical analysis
    modeling
    Marine chemistry
    
    Metadata
    Show full item record
    Publisher
    AMER METEOROLOGICAL SOC
    Citation
    Juliano, T. W., Coggon, M. M., Thompson, G., Rahn, D. A., Seinfeld, J. H., Sorooshian, A., & Lebo, Z. J. (2019). Marine Boundary Layer Clouds Associated with Coastally Trapped Disturbances: Observations and Model Simulations. Journal of the Atmospheric Sciences, (2019).
    Journal
    JOURNAL OF THE ATMOSPHERIC SCIENCES
    Rights
    Copyright © 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    Modeling marine low clouds and fog in coastal environments remains an outstanding challenge due to the inherently complex ocean–land–atmosphere system. This is especially important in the context of global circulation models due to the profound radiative impact of these clouds. This study utilizes aircraft and satellite measurements, in addition to numerical simulations using the Weather Research and Forecasting (WRF) Model, to examine three well-observed coastally trapped disturbance (CTD) events from June 2006, July 2011, and July 2015. Cloud water-soluble ionic and elemental composition analyses conducted for two of the CTD cases indicate that anthropogenic aerosol sources may impact CTD cloud decks due to synoptic-scale patterns associated with CTD initiation. In general, the dynamics and thermodynamics of the CTD systems are well represented and are relatively insensitive to the choice of physics parameterizations; however, a set of WRF simulations suggests that the treatment of model physics strongly influences CTD cloud field evolution. Specifically, cloud liquid water path (LWP) is highly sensitive to the choice of the planetary boundary layer (PBL) scheme; in many instances, the PBL scheme affects cloud extent and LWP values as much as or more than the microphysics scheme. Results suggest that differences in the treatment of entrainment and vertical mixing in the Yonsei University (nonlocal) and Mellor–Yamada–Janjić (local) PBL schemes may play a significant role. The impact of using different driving models—namely, the North American Mesoscale Forecast System (NAM) 12-km analysis and the NCEP North American Regional Reanalysis (NARR) 32-km products—is also investigated.
    Note
    6 month embargo; published online: 11 September 2019
    ISSN
    0022-4928
    DOI
    10.1175/jas-d-18-0317.1
    Version
    Final published version
    Sponsors
    State of Wyoming; Carlton R. Barkhurst Fellowship; NCAR through the National Science Foundation; National Science FoundationNational Science Foundation (NSF) [AGS-1439515]; Office of Naval ResearchOffice of Naval Research [N00014-17-1-2719, N00014-10-1-0811, N00014-16-1-2567]; Department of EnergyUnited States Department of Energy (DOE) [DE-SC0016354]
    ae974a485f413a2113503eed53cd6c53
    10.1175/jas-d-18-0317.1
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.