Show simple item record

dc.contributor.authorStepien, Tracy L
dc.contributor.authorLynch, Holley E
dc.contributor.authorYancey, Shirley X
dc.contributor.authorDempsey, Laura
dc.contributor.authorDavidson, Lance A
dc.date.accessioned2019-10-09T21:51:39Z
dc.date.available2019-10-09T21:51:39Z
dc.date.issued2019-06-27
dc.identifier.citationStepien TL, Lynch HE, Yancey SX, Dempsey L, Davidson LA (2019 ) Using a continuum model to decipher the mechanics of embryonic tissue spreading from time-lapse image sequences: An approximate Bayesian computation approach. PLoS ONE 14(6): e0218021. https://doi.org/10.1371/journal.pone.0218021en_US
dc.identifier.issn1932-6203
dc.identifier.pmid31246967
dc.identifier.doi10.1371/journal.pone.0218021
dc.identifier.urihttp://hdl.handle.net/10150/634732
dc.description.abstractAdvanced imaging techniques generate large datasets capable of describing the structure and kinematics of tissue spreading in embryonic development, wound healing, and the progression of many diseases. These datasets can be integrated with mathematical models to infer biomechanical properties of the system, typically identifying an optimal set of parameters for an individual experiment. However, these methods offer little information on the robustness of the fit and are generally ill-suited for statistical tests of multiple experiments. To overcome this limitation and enable efficient use of large datasets in a rigorous experimental design, we use the approximate Bayesian computation rejection algorithm to construct probability density distributions that estimate model parameters for a defined theoretical model and set of experimental data. Here, we demonstrate this method with a 2D Eulerian continuum mechanical model of spreading embryonic tissue. The model is tightly integrated with quantitative image analysis of different sized embryonic tissue explants spreading on extracellular matrix (ECM) and is regulated by a small set of parameters including forces on the free edge, tissue stiffness, strength of cell-ECM adhesions, and active cell shape changes. We find statistically significant trends in key parameters that vary with initial size of the explant, e.g., for larger explants cell-ECM adhesion forces are weaker and free edge forces are stronger. Furthermore, we demonstrate that estimated parameters for one explant can be used to predict the behavior of other similarly sized explants. These predictive methods can be used to guide further experiments to better understand how collective cell migration is regulated during development.en_US
dc.description.sponsorshipNational Institutes of HealthUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USA [R01 HD044750, R21 ES019259]; National Science FoundationNational Science Foundation (NSF) [CAREER IOS-0845775, CMMI-1100515]en_US
dc.language.isoenen_US
dc.publisherPUBLIC LIBRARY SCIENCEen_US
dc.rightsCopyright © 2019 Stepien et al. This is an open access article distributed under the terms of the Creative Commons Attribution License,which permits unrestricted use, distribution, and reproduction in any medium,provided the original author and source are credited.en_US
dc.titleUsing a continuum model to decipher the mechanics of embryonic tissue spreading from time-lapse image sequences: An approximate Bayesian computation approachen_US
dc.typeArticleen_US
dc.contributor.departmentUniv Arizona, Dept Mathen_US
dc.identifier.journalPLOS ONEen_US
dc.description.noteOpen access journalen_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.eprint.versionFinal published versionen_US
dc.source.journaltitlePloS one
refterms.dateFOA2019-10-09T21:51:39Z


Files in this item

Thumbnail
Name:
journal.pone.0218021.pdf
Size:
2.952Mb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record