Nuclear starburst activity induced by elongated bulges in spiral galaxies
Author
Kim, EunbinKim, Sungsoo S
Choi, Yun-Young
Lee, Gwang-Ho
de Grijs, Richard
Lee, Myung Gyoon
Hwang, Ho Seong
Affiliation
Univ Arizona, Steward ObservIssue Date
2018-06-05Keywords
galaxies: bulges galaxies: evolutiongalaxies: formation
galaxies: spiral
galaxies: starburst
galaxies: star formation
Metadata
Show full item recordPublisher
OXFORD UNIV PRESSCitation
Eunbin Kim, Sungsoo S Kim, Yun-Young Choi, Gwang-Ho Lee, Richard de Grijs, Myung Gyoon Lee, Ho Seong Hwang, Nuclear starburst activity induced by elongated bulges in spiral galaxies, Monthly Notices of the Royal Astronomical Society, Volume 479, Issue 1, September 2018, Pages 562–569, https://doi.org/10.1093/mnras/sty1451Rights
Copyright © 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
We study the effects of bulge elongation on the star formation activity in the centres of spiral galaxies using the data from the Sloan Digital Sky Survey Data Release 7. We construct a volume-limited sample of face-on spiral galaxies with Mr < −19.5 mag at 0.02 ≤ z < 0.055 by excluding barred galaxies, where the aperture of the SDSS spectroscopic fibre covers the bulges of the galaxies. We adopt the ellipticity of bulges measured by Simard et al., who performed two-dimensional bulge + disc decompositions using the SDSS images of galaxies, and identify nuclear starbursts using the fibre specific star formation rates derived from the SDSS spectra. We find a statistically significant correlation between bulge elongation and nuclear starbursts in the sense that the fraction of nuclear starbursts increases with bulge elongation. This correlation is more prominent for fainter and redder galaxies, which exhibit higher ratios of elongated bulges. We find no significant environmental dependence of the correlation between bulge elongation and nuclear starbursts. These results suggest that non-axisymmetric bulges can efficiently feed the gas into the centre of galaxies to trigger nuclear starburst activity.ISSN
0035-8711Version
Final published versionSponsors
National Research Foundation -Ministry of Science, ICT and Future Planning of Korea [NRF-2014R1A2A1A11052367]; KASI-Arizona Fellowship; National Natural Science Foundation of China [U1631102, 11373010, 11633005]; National Key Research and Development Program of China [2017YFA0402702]; National Research Foundation (NRF) of Korea - Korean Government [NRF-2017R1A2B4004632]; National Research Foundation of Korea [2017R1A5A1070354]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washingtonae974a485f413a2113503eed53cd6c53
10.1093/mnras/sty1451
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
The Massive and Distant Clusters of WISE Survey. V. Extended Radio Sources in Massive Galaxy Clusters at z ∼ 1Moravec, Emily; Gonzalez, Anthony H.; Stern, Daniel; Brodwin, Mark; Clarke, Tracy; Decker, Bandon; Eisenhardt, Peter R. M.; Mo, Wenli; O’Donnell, Christine; Pope, Alexandra; et al. (IOP PUBLISHING LTD, 2019-02-01)We present the results from a pilot study with the Karl G. Jansky Very Large Array to determine the radio morphologies of extended radio sources and the properties of their host-galaxies in 10 massive galaxy clusters at z similar to 1, an epoch in which clusters are assembling rapidly. These clusters are drawn from a parent sample of WISE-elected galaxy clusters that were cross-correlated with the VLA Faint Images of the Radio Sky at Twenty-Centimeters survey to identify extended radio sources within 1' of the cluster centers. Out of the 10 targeted sources, 6 are FR II sources, 1 is an FR I source, and 3 have undetermined morphologies. Eight radio sources have associated Spitzer data, 75% presenting infrared counterparts. A majority of these counterparts are consistent with being massive galaxies. The angular extent of the FR sources exhibits a strong correlation with the cluster-centric radius, which warrants further investigation with a larger sample.
-
The Faint End of the Centaurus A Satellite Luminosity FunctionCrnojević, D.; Sand, D. J.; Bennet, P.; Pasetto, S.; Spekkens, K.; Caldwell, N.; Guhathakurta, P.; McLeod, B.; Seth, A.; Simon, J. D.; et al. (IOP PUBLISHING LTD, 2019-02-10)The Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS) is constructing a wide-field map of the resolved stellar populations in the extended halos of these two nearby, prominent galaxies. We present new Magellan/Megacam imaging of a similar to 3 deg(2) area around Centaurus A (Cen A), which filled in much of our coverage to its south, leaving a nearly complete halo map out to a projected radius of similar to 150 kpc and allowing us to identify two new resolved dwarf galaxies. We have additionally obtained deep Hubble Space Telescope (HST) optical imaging of 11 out of the 13 candidate dwarf galaxies identified around Cen A and presented in Crnojevic et al. 2016a: seven are confirmed to be satellites of Cen A, while four are found to be background galaxies. We derive accurate distances, structural parameters, luminosities, and photometric metallicities for the seven candidates confirmed by our HST/ACS imaging. We further study the stellar population along the similar to 60 kpc long (in projection) stream associated with Dw3, which likely had an initial brightness of M-V similar to -15 and shows evidence for a metallicity gradient along its length. Using the total sample of 11 dwarf satellites discovered by the PISCeS survey, as well as 13 brighter previously known satellites of Cen A, we present a revised galaxy luminosity function for the Cen A group down to a limiting magnitude of M-V similar to -8, which has a slope of -1.14 +/- 0.17, comparable to that seen in the Local Group and in other nearby groups of galaxies.
-
Predicting fully self-consistent satellite richness, galaxy growth and starformation rates from the STastical sEmi-Empirical modeL steelGrylls, Philip J; Shankar, F; Leja, J; Menci, N; Moster, B; Behroozi, P; Zanisi, L; Univ Arizona, Dept Astron & Steward Observ (OXFORD UNIV PRESS, 2019-10-22)Observational systematics complicate comparisons with theoretical models limiting understanding of galaxy evolution. In particular, different empirical determinations of the stellar mass function imply distinct mappings between the galaxy and halo masses, leading to diverse galaxy evolutionary tracks. Using our state-of-the-art STatistical sEmi-Empirical modeL, STEEL, we show fully self-consistent models capable of generating galaxy growth histories that simultaneously and closely agree with the latest data on satellite richness and star formation rates at multiple redshifts and environments. Central galaxy histories are generated using the central halo mass tracks from state-of-the-art statistical dark matter accretion histories coupled to abundance matching routines. We show that too flat high-mass slopes in the input stellar mass-halo mass relations as predicted by previous works, imply non-physical stellar mass growth histories weaker than those implied by satellite accretion alone. Our best-fitting models reproduce the satellite distributions at the largest masses and highest redshifts probed, the latest data on star formation rates and its bimodality in the local Universe, and the correct fraction of ellipticals. Our results are important to predict robust and self-consistent stellar mass-halo mass relations and to generate reliable galaxy mock catalogues for the next generations of extragalactic surveys such as Euclid and LSST.