• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Electron reconstruction and identification in the ATLAS experiment using the 2015 and 2016 LHC proton–proton collision data at √s=13 TeV

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Aaboud2019_Article_ElectronRec ...
    Size:
    2.116Mb
    Format:
    PDF
    Description:
    Final Published Version
    Download
    Author
    Berlendis, S.
    Cheu, E.
    Delitzsch, C. M.
    Johns, K. A.
    Jones, S.
    Lampl, W.
    LeBlanc, M.
    Leone, R.
    Loch, P.
    Nayyar, R.
    Rutherfoord, J. P.
    Varnes, E. W.
    Zhou, Y.
    Show allShow less
    Affiliation
    Univ Arizona, Dept Phys
    Issue Date
    2019-08-03
    
    Metadata
    Show full item record
    Publisher
    SPRINGER
    Citation
    Aaboud, M., Aad, G., Abbott, B. et al. Eur. Phys. J. C (2019) 79: 639. https://doi.org/10.1140/epjc/s10052-019-7140-6
    Journal
    EUROPEAN PHYSICAL JOURNAL C
    Rights
    Copyright © CERN for the benefit of the ATLAS collaboration 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP3.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    Algorithms used for the reconstruction and identification of electrons in the central region of the ATLAS detector at the Large Hadron Collider (LHC) are presented in this paper; these algorithms are used in ATLAS physics analyses that involve electrons in the final state and which are based on the 2015 and 2016 proton–proton collision data produced by the LHC at s√ = 13 TeV. The performance of the electron reconstruction, identification, isolation, and charge identification algorithms is evaluated in data and in simulated samples using electrons from Z→ee and J/ψ→ee decays. Typical examples of combinations of electron reconstruction, identification, and isolation operating points used in ATLAS physics analyses are shown.
    Note
    Open access journal
    ISSN
    1434-6044
    DOI
    10.1140/epjc/s10052-019-7140-6
    Version
    Final published version
    Sponsors
    ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; NWO, The Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, UK; DOE, USA; NSF, USA; BCKDF, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; COST, European Union; ERC, European Union; ERDF, European Union; Horizon 2020, European Union; Investissements d' Avenir Labex and Idex, ANR, France; DFG, Germany; AvH Foundation, Germany; Herakleitos programme; Thales programme; Aristeia programme; EU-ESF, Greece; Greek NSRF, Greece; BSF-NSF, Israel; GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; Royal Society, UK; Marie Sklodowska-Curie Actions, European Union; Canton of Geneva, Switzerland; Leverhulme Trust, UK
    ae974a485f413a2113503eed53cd6c53
    10.1140/epjc/s10052-019-7140-6
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.