• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Utilizing Precipitation and Spring Discharge Data to Identify Groundwater Quick Flow Belts in a Karst Spring Catchment

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    jhm-d-18-0261.1.pdf
    Size:
    2.257Mb
    Format:
    PDF
    Description:
    Final Published Version
    Download
    Author
    An, Lixing
    Ren, Xingyuan
    Hao, Yonghong cc
    Jim Yeh, Tian-Chyi
    Zhang, Baoju
    Affiliation
    Univ Arizona, Dept Hydrol & Atmospher Sci
    Issue Date
    2019-10-10
    Keywords
    Hydrologic cycle
    Rainfall
    Runoff
    Spectral analysis
    models
    distribution
    
    Metadata
    Show full item record
    Publisher
    AMER METEOROLOGICAL SOC
    Citation
    An, L., Ren, X., Hao, Y., Jim Yeh, T. C., & Zhang, B. (2019). Utilizing Precipitation and Spring Discharge Data to Identify Groundwater Quick Flow Belts in a Karst Spring Catchment. Journal of Hydrometeorology, 20(10), 2057-2068.
    Journal
    JOURNAL OF HYDROMETEOROLOGY
    Rights
    Copyright © 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    In karst terrains, fractures and conduits often occur in clusters, forming groundwater quick flow belts, which are the major passages of groundwater and solute transport. We propose a cost-effective method that utilizes precipitation and spring discharge data to identify groundwater quick flow belts by the multitaper method (MTM). In this paper, hydrological processes were regarded as the transformation of precipitation signals to spring discharge signals in a karst spring catchment. During the processes, karst aquifers played the role of signal filters. Only those signals with high energy could penetrate through aquifers and reflect in the spring discharge, while other weak signals were filtered out or altered by aquifers. Hence, MTM was applied to detect and reconstruct the signals that penetrate through aquifers. Subsequently, by analyzing the reconstructed signals of precipitation with those of spring discharge, we acquired the hydraulic response time and identified the quick flow belts. Finally, the methods were applied to the Niangziguan Spring (NS) catchment, China. Results showed that the hydraulic response time of the spring discharge to precipitation was 3 months at Pingding County; 4 months at Yuxian County, Yangquan City, Xiyang County, and Heshun County; and 27 months at Shouyang County and Zouquan County. These results suggested that Pingding County is located at a groundwater quick flow belt, which is a major passage of groundwater and contaminants, in the NS catchment. This is important since Pingding County is not only the key development area of karst groundwater but also the key conservation area for sustainable development of karst groundwater resources in NS catchment.
    Note
    6 month embargo; published online: 10 October 2019
    ISSN
    1525-755X
    DOI
    10.1175/jhm-d-18-0261.1
    Version
    Final published version
    Sponsors
    Natural Science Foundation of Tianjin, China [18JCZDJC39500]; Program for Innovative Research Team in Universities of Tianjin [TD13-5078]; National Natural Science Foundation of China [41272245, 40972165, 40572150]
    ae974a485f413a2113503eed53cd6c53
    10.1175/jhm-d-18-0261.1
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.