Show simple item record

dc.contributor.authorAn, Lixing
dc.contributor.authorRen, Xingyuan
dc.contributor.authorHao, Yonghong
dc.contributor.authorJim Yeh, Tian-Chyi
dc.contributor.authorZhang, Baoju
dc.date.accessioned2019-11-07T05:07:57Z
dc.date.available2019-11-07T05:07:57Z
dc.date.issued2019-10-10
dc.identifier.citationAn, L., Ren, X., Hao, Y., Jim Yeh, T. C., & Zhang, B. (2019). Utilizing Precipitation and Spring Discharge Data to Identify Groundwater Quick Flow Belts in a Karst Spring Catchment. Journal of Hydrometeorology, 20(10), 2057-2068.en_US
dc.identifier.issn1525-755X
dc.identifier.doi10.1175/jhm-d-18-0261.1
dc.identifier.urihttp://hdl.handle.net/10150/635010
dc.description.abstractIn karst terrains, fractures and conduits often occur in clusters, forming groundwater quick flow belts, which are the major passages of groundwater and solute transport. We propose a cost-effective method that utilizes precipitation and spring discharge data to identify groundwater quick flow belts by the multitaper method (MTM). In this paper, hydrological processes were regarded as the transformation of precipitation signals to spring discharge signals in a karst spring catchment. During the processes, karst aquifers played the role of signal filters. Only those signals with high energy could penetrate through aquifers and reflect in the spring discharge, while other weak signals were filtered out or altered by aquifers. Hence, MTM was applied to detect and reconstruct the signals that penetrate through aquifers. Subsequently, by analyzing the reconstructed signals of precipitation with those of spring discharge, we acquired the hydraulic response time and identified the quick flow belts. Finally, the methods were applied to the Niangziguan Spring (NS) catchment, China. Results showed that the hydraulic response time of the spring discharge to precipitation was 3 months at Pingding County; 4 months at Yuxian County, Yangquan City, Xiyang County, and Heshun County; and 27 months at Shouyang County and Zouquan County. These results suggested that Pingding County is located at a groundwater quick flow belt, which is a major passage of groundwater and contaminants, in the NS catchment. This is important since Pingding County is not only the key development area of karst groundwater but also the key conservation area for sustainable development of karst groundwater resources in NS catchment.en_US
dc.description.sponsorshipNatural Science Foundation of Tianjin, China [18JCZDJC39500]; Program for Innovative Research Team in Universities of Tianjin [TD13-5078]; National Natural Science Foundation of China [41272245, 40972165, 40572150]en_US
dc.language.isoenen_US
dc.publisherAMER METEOROLOGICAL SOCen_US
dc.rightsCopyright © 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).en_US
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectHydrologic cycleen_US
dc.subjectRainfallen_US
dc.subjectRunoffen_US
dc.subjectSpectral analysisen_US
dc.subjectmodelsen_US
dc.subjectdistributionen_US
dc.titleUtilizing Precipitation and Spring Discharge Data to Identify Groundwater Quick Flow Belts in a Karst Spring Catchmenten_US
dc.typeArticleen_US
dc.contributor.departmentUniv Arizona, Dept Hydrol & Atmospher Scien_US
dc.identifier.journalJOURNAL OF HYDROMETEOROLOGYen_US
dc.description.note6 month embargo; published online: 10 October 2019en_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.eprint.versionFinal published versionen_US
dc.source.volume20
dc.source.issue10
dc.source.beginpage2057-2068


Files in this item

Thumbnail
Name:
jhm-d-18-0261.1.pdf
Size:
2.257Mb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record