• Seoul National University Accelerator Mass Spectrometry (SNU-AMS) Radiocarbon Date List I

      Kim, J. C.; Youn, M. Y.; Kim, I. C.; Park, J. H.; Song, Y. M.; Kang, J.; Cheoun, M. K. (Department of Geosciences, The University of Arizona, 2006-01-01)
      The accelerator mass spectrometry facility at Seoul National University (SNU-AMS) began functioning in December 1998 and was first reported at the Vienna AMS conference in October 1999 and at the 17th International Radiocarbon Conference in Israel in June 2000. At the Vienna conference, we reported our accelerator system (Kim et al. 2000) and details of the basic sample preparation system (Lee et al. 2000), such as the combustion line to produce CO2 ; the catalytic reduction line for the graphitization of CO2 ; and the pretreatment procedures for wood, charcoal, and peat samples. The recent progress of the AMS facility (Kim et al. 2001) and the extension of the sample pretreatment system to iron and bone samples were reported at the 17th International Radiocarbon Conference (Cheoun et al. 2001). In the meantime, extensive testing of accuracy and reproducibility has been carried out, and ~1000 unknown archaeological and geological samples have been measured every year. In this report, the archaeological, geological, and environmental data carried out in 1999 are presented in terms of yr BP.
    • Seoul National University Accelerator Mass Spectrometry (SNU-AMS) Radiocarbon Date List II

      Kim, J. C.; Youn, M. Y.; Kim, I. C.; Park, J. H.; Song, Y. M.; Kang, J. (Department of Geosciences, The University of Arizona, 2006-01-01)
      The accelerator mass spectrometry facility at Seoul National University (SNU-AMS) began functioning in December 1998 and was first reported at the Vienna AMS conference in October 1999 and at the 17th Radiocarbon Conference in Israel in June 2000. At the Vienna conference, we reported our accelerator system (Kim et al. 2000) and the basic sample preparation system (Lee et al. 2000), including the combustion line to produce CO2 ; the catalytic reduction line for the graphitization of CO2 ; and also pretreatment procedures for wood, charcoal, and peat samples. Recent progress of the AMS facility (Kim et al. 2001) and extension of the sample pretreatment system to iron and bone samples were reported at the 17th Radiocarbon Conference (Cheoun et al. 2001). In the meantime, extensive testing of accuracy and reproducibility has been carried out, and ~1000 unknown archaeological and geological samples have been measured every year. A report of data carried out in 1999 is presented by Kim et al. (this issue). In this report, the archaeological, geological, and environmental data carried out in 2000 are presented in terms of yr BP.
    • The 3MV Multi-Element AMS in Xi'an, China: Unique Features and Preliminary Tests

      Zhou, Weijian; Zhao, Xiaolei; Xuefeng, Lu; Lin, Liu; Zhengkun, Wu; Peng, Cheng; Wengnian, Zhao; Chunhai, Huang (Department of Geosciences, The University of Arizona, 2006-01-01)
      A 3MV multi-element accelerator mass spectrometer (AMS) has been installed in Xian, China, and preliminary tests have been completed. The results of both background and precision tests for 4 nuclides are 3.1 x 10^-16, 0.2% (14C); 1.8 x 10^-14, 1.4% (10Be); 2.3 x 10^-15, 1.14% (26Al); and 2.0 x 10^-14, 1.75% (129I). The unique features of this facility are the newly developed ion source accepting solid and CO2 samples; the specially designed low-energy injector, including a beam blanking unit and Q-snout; the acceleration tube structure with the combined magnetic and electrostatic suppression; and the function of the slit stabilization in the post-acceleration system. These features are discussed in terms of the end-users point of view.