• Carbonate 14C Background: Does It Have Multiple Personalities?

      Nadeau, Marie-Josée; Grootes, Pieter M.; Voelker, Antje; Bruhn, Frank; Oriwall, Alexander (Department of Geosciences, The University of Arizona, 2001-01-01)
      Measurements of the radiocarbon concentration of several carbonate background materials, either mineral (IAEA C1 Carrara marble and Icelandic double spar) or biogenic (foraminifera and molluscs), show that the apparent ages of diverse materials can be quite different. Using 0.07 pMC obtained from mineral samples as a processing blank, the results from foraminifera and mollusc background samples, varying from 0.12 to 0.58 pMC (54.0–41.4 ka), show a species-specific contamination that reproduces over several individual shells and foraminifera from several sediment cores. Different cleaning attempts have proven ineffective, and even stronger measures such as progressive hydrolization or leaching of the samples prior to routine preparation, did not give any indication of the source of the contamination. In light of these results, the use of mineral background material in the evaluation of the age of older unknown samples of biogenic carbonate (>30 ka) proves inadequate. The use of background samples of the same species and provenance as the unknown samples is essential, and if such material is unavailable, generic biogenic samples such as mixed foraminifera samples should be used. The description of our new modular carbonate sample preparation system is also introduced.
    • Chemical Removal of Conservation Substances By 'Soxhlet'-Type Extraction

      Bruhn, Frank; Duhr, Alexander; Grootes, Pieter M.; Mintrop, Annette; Nadeau, Marie-Josée (Department of Geosciences, The University of Arizona, 2001-01-01)
      At the Leibniz radiocarbon lab, art and archaeological objects, often chemically conserved and thus potentially contaminated with respect to their 14C content, are treated using a computer-controlled “Soxhlet”-type series extractor. This device uses a continuous procedure of boiling and condensation of different solvents for extraction and vacuum filtration under constant process conditions. An elutrope sequence of five solvents that dissolve most customary conservation chemicals was selected. A study of these different contaminants applied to reference wood samples with subsequent accelerator mass spectrometry (AMS) measurements demonstrates that their effective removal is dependent on the use of adequate solvents. For many contaminants (e.g. Wood glue, methyl cellulose, Klucel(R), sugar, and polyethylene glycol), routine acid-alkali-acid (AAA) treatment already yields satisfactory results, whereas for Caparol(R) and beeswax a relatively “mild” treatment with acetone, methanol, water, and subsequent standard AAA extraction is sufficient. Complete removal of rubber glue, epoxyresin, and paraffin can only be accomplished with our full set of solvents. The latter procedure is also appropriate when no or only incomplete information about the type of conservation material is available. For epoxy resin the contamination appears to be enriched in the alkali residue, and the easily soluble “humic acid” fraction, even after standard AAA treatment, gives satisfactory results. Two case studies on the application of the extraction procedures are presented.