• A Marine Reservoir Data Correction Database and On-Line Interface

      Reimer, Paula J.; Reimer, Ron W. (Department of Geosciences, The University of Arizona, 2001-01-01)
      Calibration is essential for interpretation of radiocarbon dates, especially when the 14C dates are compared to historical or climatic records with a different chronological basis. 14C ages of samples from the marine environment, such as shells or fish bones, or samples with a marine component, such as human bone in coastal regions, require an additional consideration because of the reservoir age of the ocean. While the pre-industrial global mean reservoir correction, R(t), is about 400 years, local variations (Delta-R) can be several hundred years or more. Delta-R compilations on a global scale have been undertaken previously (Stuiver et al. 1986; Stuiver and Braziunas 1993), but have not been updated recently. Here we describe an on-line reservoir correction database accessed via mapping software. Rather than publishing a static Delta-R compilation, new data will be incorporated when it becomes available. The on-line marine reservoir correction database can be accessed at the website http://www.calib.org/.
    • Marine Radiocarbon Reservoir Effect in the Western North Pacific Observed in Archaeological Fauna

      Yoneda, Minoru; Hirota, Masashi; Uchida, Masao; Uzawa, Kazuhiro; Tanaka, Atsushi; Shibata, Yasuyui; Morita, Masatoshi (Department of Geosciences, The University of Arizona, 2001-01-01)
      Faunal remains originating from terrestrial and marine mammals, and belonging to the same archaeological deposits were compared to evaluate the marine radiocarbon reservoir ages around the Hokkaido island, Japan. From five shell middens of different ages from the Jomon period (4900 BP) to the Ainu cultural period (800 BP), 107 animal bone samples were selected for radiocarbon measurements. The apparent age differences between Japanese deer and northern fur seal showed the clear effect of deep-water upwelling in this region. Our data showed relatively stable age differences from 4500 BP to 800 BP, with an estimated Delta-R values around 380 14C yr. Results are consistent with previous estimation based on simulation models and oceanographic properties.
    • Preliminary Estimate of the Reservoir Age in the Lagoon of Venice

      Zoppi, Ugo; Albani, A.; Ammerman, A. J.; Hua, Quan; Lawson, E. M.; Serandrei Barbero, R. (Department of Geosciences, The University of Arizona, 2001-01-01)
      The Lagoon of Venice was formed about 6000 years ago due to the marine transgression associated with the late Pleistocene sea level rise. Already by the time of the Republic of Venice (727-1797 AD) it was recognized that the future of the city and its many historical buildings was strongly correlated with the future of the lagoon itself. During the centuries many engineering projects such as modification of the fluvial systems, construction of coastal barriers, and dredging of navigation channels were carried out to preserve the lagoonal environment. The present-day lagoon is the result of all these processes and covers an area of 540 km2 with an average depth of 0.6 m. A series of radiocarbon age determinations carried out on material obtained from cores collected in the Lagoon of Venice indicate within the sedimentary units the existence of a number of discontinuities and slumping events due to the highly active lagoonal environment. The evaluation of data obtained from a variety of different materials—both terrestrial and marine—allowed us to determine for the first time the marine reservoir effect in the lagoon of Venice. The discussion includes a comparison with other relevant measurements and a possible explanation to the relatively high reservoir age (1200-1300 yr).