• Stepped-Combustion 14C Dating of Sediment: A Comparison with Established Techniques

      McGeehin, Jack; Burr, George S.; Jull, A. J. Timothy; Reines, D.; Gosse, J.; Davis, P. T.; Muhs, D.; Southon, John R. (Department of Geosciences, The University of Arizona, 2001-01-01)
    • Carbonate 14C Background: Does It Have Multiple Personalities?

      Nadeau, Marie-Josée; Grootes, Pieter M.; Voelker, Antje; Bruhn, Frank; Oriwall, Alexander (Department of Geosciences, The University of Arizona, 2001-01-01)
      Measurements of the radiocarbon concentration of several carbonate background materials, either mineral (IAEA C1 Carrara marble and Icelandic double spar) or biogenic (foraminifera and molluscs), show that the apparent ages of diverse materials can be quite different. Using 0.07 pMC obtained from mineral samples as a processing blank, the results from foraminifera and mollusc background samples, varying from 0.12 to 0.58 pMC (54.0–41.4 ka), show a species-specific contamination that reproduces over several individual shells and foraminifera from several sediment cores. Different cleaning attempts have proven ineffective, and even stronger measures such as progressive hydrolization or leaching of the samples prior to routine preparation, did not give any indication of the source of the contamination. In light of these results, the use of mineral background material in the evaluation of the age of older unknown samples of biogenic carbonate (>30 ka) proves inadequate. The use of background samples of the same species and provenance as the unknown samples is essential, and if such material is unavailable, generic biogenic samples such as mixed foraminifera samples should be used. The description of our new modular carbonate sample preparation system is also introduced.
    • Transition Dating' – A Heuristic Mathematical Approach to the Collation of Radiocarbon Dates from Stratified Sequences

      Sharon, Ilan (Department of Geosciences, The University of Arizona, 2001-01-01)
      A heuristic approach, nicknamed "transition dating," was used to date sequences of early Iron Age contexts using a series of 14C determinations. The basic principles of transition dating are simple and intuitive: 1) attempt to date transitions between periods, phases, etc. Rather than the phases themselves, and 2) the most plausible date for that transition is one that is later than the dates from contexts preceding it, and is still earlier than the dates succeeding it. Hypotheses regarding the actual date of each transition may be evaluated using an appropriate loss function. These loss functions can also be adjusted or weighted by the user to account differentially for the various factors causing the distortion or "fuzz" in the dates.
    • Progress in Radiocarbon Target Preparation at the ANTARES AMS Centre

      Hua, Q.; Jacobsen, G. E.; Zoppi, U.; Lawson, E. M.; Williams, A. A.; McGann, M. J. (Department of Geosciences, The University of Arizona, 2001-01-01)
      We present routine methods of target preparation for radiocarbon analysis at the ANTARES Accelerator Mass Spectrometry (AMS) Centre, as well as recent developments which have decreased our procedural blank level and improved our ability to process small samples containing less than 200 micrograms of carbon. Routine methods of 14C sample preparation include sample pretreatment, CO2 extraction (combustion, hydrolysis and water stripping) and conversion to graphite (graphitization). A new method of cleaning glassware and reagents used in sample processing, by baking them under a stream of oxygen, is described. The results show significant improvements in our procedural blanks. In addition, a new graphitization system dedicated to small samples, using H2/Fe reduction of CO2, has been commissioned. The technical details of this system, the graphite yield and the level of fractionation of the targets are discussed.
    • An Extraction System to Measure Carbon-14 Terrestrial Ages of Meteorites with a Tandetron AMS at Nagoya University

      Minami, Masayo; Nakamura, Toshio (Department of Geosciences, The University of Arizona, 2001-01-01)
      We have constructed a system to extract carbon from meteorites using a vacuum-tight RF melting method in order to study radiocarbon activities in meteorites. The extraction system was examined using iron standards of known carbon content. The carbon extraction efficiencies and 14C ages of the iron standards by this method were compared with the results obtained previously by our older melting system and a wet oxidation method. Higher collection efficiencies of about 90% for the iron samples of relatively high carbon content were achieved by the new system. The efficiency of extracting a small amount of carbon is also near 90% after improving the extraction procedure. The 14C ages of the iron standards were compared to the ages by the wet method. The results indicate that contamination by modern carbon is negligible in the system. Furthermore, terrestrial 14C ages of two Antarctic meteorites, Y-75102 and ALH-77294, from the Yamato and Allan Hills ice fields, respectively, were determined. The age of Y-75102 is estimated 4.0 +/1.0 ka, and the age of ALH-77294 is 19.5 +/1.2 ka. The 14C ages on the meteorites roughly agree with the literature value. However, further study is needed in improvement on reducing a background value and of complete fusion of a meteorite in the extraction system.
    • From the Guest Editor

      Carmi, Israel (Department of Geosciences, The University of Arizona, 2001-01-01)
    • Sample Preparation of Dissolved Organic Carbon in Groundwater for AMS 14C Analysis

      Burr, George S.; Thomas, J. M.; Reines, D.; Jeffrey, D.; Courtney, C.; Jull, A. J. Timothy; Lange, Todd (Department of Geosciences, The University of Arizona, 2001-01-01)
      This study describes a sample preparation technique used to isolate dissolved organic carbon (DOC) in groundwater for radiocarbon analysis using accelerator mass spectrometry (AMS). The goal of the work is to improve our ability to determine groundwater residence times based on 14C measurements of the DOC fraction in groundwater. Water samples were collected from carbonate and volcanic rock aquifers in southern Nevada. Multiple measurements of total dissolved organic carbon (TDOC) in groundwater from one site are used to demonstrate the reproducibility of the analytical procedure. The reproducibility of the method is about one percent (1sigma) for a 0.5 mg sample. The procedural blank for the same size sample contains about 1 percent modern carbon (pMC).
    • Searching Solar Periodicities in the Late Glacial Record of Atmospheric Radiocarbon

      Goslar, Tomasz; Tisnérat,-Laborde, Nadine; Paterne, Martine (Department of Geosciences, The University of Arizona, 2001-01-01)
      Accelerator mass spectrometry radiocarbon (AMS 14C) dating of the late glacial section of laminated sediments from Lake Gościąż and Lake Perespilno, Poland, performed with time resolution of 20-30 years suggests quasi-periodic oscillations of Delta-14C. The regularity of oscillations has been checked by the Maximum Entropy and Fast Fourier Transform methods (MEM and FFT), which revealed peaks at 200 and 230 yr. These periods are similar to those found in the high-precision Holocene Delta-14C record, and attributed to the changing sun. The analytical assessment of the significance of the FFT and MEM peaks is problematic because of non-uniform spacing and various uncertainties in the input data. The significance of the peaks has therefore been studied by the Monte-Carlo method. Because the original data were approximated with a spline function, the amplitude of the MEM and FFT peaks depends on the stiffness of the spline, which is strongly related to the "real" uncertainty of 14C ages. The Monte-Carlo experiments demonstrate that the significance levels of the MEM and FFT peaks also depend on the spline stiffness. Therefore, the existence of solar 14C variations in the Late Glacial remains an open question.
    • The Chemical and Enzymatic Hydrolysis of Archaeological Wood Cellulose and Monosaccharide Purification by High pH Anion Exchange Chromatography for Compound-Specific Radiocarbon Dating

      Hodgins, Gregory L.; Butters, T. D.; Bronk Ramsey, Christopher; Hedges, Robert E. M. (Department of Geosciences, The University of Arizona, 2001-01-01)
      Preliminary experiments were carried out on archaeological wood to investigate methods of cellulose hydrolysis and carbohydrate monomer purification for the purpose of compound-specific radiocarbon dating. The Chelford log, a known 14C dead source of wood cellulose, was selected for study in order to investigate the levels of contamination introduced during sample purification. Two methods of hydrolysis were examined, mineral acid hydrolysis and enzyme hydrolysis using cellulase from Penicillium funiculosum. Under the conditions described, enzymolysis was far superior to acid hydrolysis in terms of the glucose monomer yield. Glucose monomer purification was accomplished using high pH anion exchange chromatography with pulsed amperometric detection. This high performance liquid chromatography (HPLC) method does not require sample derivatization and the chromatography products can be collected in water. These characteristics make it potentially well suited to carbon dating applications. 14C dating of chromatographically purified glucose fractions revealed significant levels of contamination had accumulated during both protocols. Glucose contamination from the cellulase enzyme preparation was a major source of contamination within the enzymatically hydrolyzed samples. Ultrafiltration of the enzyme removed some but not all of this contamination. The contamination must be reduced 10-fold before the methodology could be viable for dating. This hydrolysis/HPLC method is also being investigated for 14C dating of other carbohydrate polymers such as chitin.
    • Converting AMS Data to Radiocarbon Values: Considerations and Conventions

      McNichol, A. P.; Jull, A. J. T.; Burr, G. S. (Department of Geosciences, The University of Arizona, 2001-01-01)
      We summarize the basic operation of accelerator mass spectrometry (AMS) systems used to measure radiocarbon and discuss the calculations used to convert AMS output to 14C data.
    • Cosmic Background Reduction in the Radiocarbon Measurement By Scintillation Spectrometry at the Underground Laboratory of Gran Sasso

      Plastino, Wolfango; Kaihola, Lauri; Bartolomei, Paolo; Bella, Francesco (Department of Geosciences, The University of Arizona, 2001-01-01)
      Radiocarbon measurements by two 1220 Quantulus(TM) ultra low background liquid scintillation spectrometers were performed at the underground laboratory of Gran Sasso and the Radiocarbon Laboratory of E.N.E.A.-Bologna to study the efficiency and background variations related to measurement sites. The same configuration setup, i.e. The same center of gravity of the 14C spectrum (SQP(I) = 410 +/1) was obtained in both instruments. Many different background and modern standards with pure analytical benzene were used and spectra for 40 one-hour periods were obtained. The data indicates a background reduction of approximately 65% between the surface and underground laboratories, with no differences in the efficiency. Recording similar efficiencies in both spectrometers is probably due to fairly identical photomultiplier characteristics. The cosmic noise reduction observed at the laboratory of Gran Sasso makes it possible to perform high precision 14C measurements and to extend for these idealized samples the present maximum dating limit from 58,000 BP to 62,000 BP (5 mL, 3 days counting).
    • Development of a Semi-Automated System for Routine Preparation of Carbonate Samples

      Tisnérat-Laborde, N.; Poupeau, J. J.; Tannau, J. F.; Paterne, M. (Department of Geosciences, The University of Arizona, 2001-01-01)
      We constructed a semi-automated system to transform carbonate samples to CO2, as a means to increase sample-processing capacity. The physicochemical process includes hydrolysis of carbonate, quantification of the mass of carbon and CO2 collection in a glass ampoule. The system is computer-controlled and monitored, and all the data are stored. A single run of five consecutive samples requires about 3.5 hours. Measurements of 14C concentrations were made on samples of IAEAC-1 Carrara marble to test the reliability of this semi-automated system. These measurements have allowed the determination of the total system background and the memory effect of our system.
    • Development of the Radiocarbon Calibration Program

      Bronk Ramsey, Christopher (Department of Geosciences, The University of Arizona, 2001-01-01)
      This paper highlights some of the main developments to the radiocarbon calibration program, OxCal. In addition to many cosmetic changes, the latest version of OxCal uses some different algorithms for the treatment of multiple phases. The theoretical framework behind these is discussed and some model calculations demonstrated. Significant changes have also been made to the sampling algorithms used which improve the convergence of the Bayesian analysis. The convergence itself is also reported in a more comprehensive way so that problems can be traced to specific parts of the model. The use of convergence data, and other techniques for testing the implications of particular models, are described.
    • Radiocarbon Reservoir Correction Ages in the Peter the Great Gulf, Sea of Japan, and Eastern Coast of the Kunashir, Southern Kuriles (Northwestern Pacific)

      Kuzmin, Yaroslav V.; Burr, George S.; Jull, A. J. Timothy (Department of Geosciences, The University of Arizona, 2001-01-01)
      The radiocarbon reservoir age correction values (R) for the Russian Far East are estimated as 370 +/26 yr for the northwestern Sea of Japan, and 711 +/46 yr for the southern Kurile Islands.
    • Radiocarbon Measurements of Tree Rings from 14 ka Huon Pine

      Lange, Todd; Barbetti, M.; Donahue, Douglas J. (Department of Geosciences, The University of Arizona, 2001-01-01)
      We have measured the radiocarbon content of tree rings from a section of Huon pine retrieved from Tasmania. The sample was divided into 39 five-ring sub-samples covering a period of 194 years. Radiocarbon ages of each of these sub-samples was determined by making four measurements of each sub-sample at the Arizona AMS laboratory (Table 1). The resulting 1-sigma precisions are about 0.5%. A comparison of our data with the appropriate curve in INTCAL98 indicates that the calendar age of our sample is close to 14,000 cal BP. Using this age calibration, we have constructed a plot of Delta-14C versus assumed calendar age. This plot shows an essentially constant value over the youngest 125 rings of our sample. Over the oldest 75 yr of the sample, the Delta-14C curve exhibits three fluctuations, the largest of which is about 65 per mil. The time of the peaks in the Huon-pine 14C curve corresponds approximately with the European Bolling/Allerod climatic event. Work is in progress to extend the data 100 yr more toward older ages.
    • Delta-R Correction Values for the Northern Indian Ocean

      Dutta, Koushik; Bhushan, Ravi; Somayajulu, B. L. K. (Department of Geosciences, The University of Arizona, 2001-01-01)
      Apparent marine radiocarbon ages are reported for the northern Indian Ocean region for the pre-nuclear period, based on measurements made in seven mollusk shells collected between 1930 and 1954. The conventional 14C ages of these shells range from 693 +/44 to 434 +/51 BP in the Arabian Sea and 511 +/34 to 408 +/51 BP in the Bay of Bengal. These ages correspond to mean Delta-R correction values of 163 +/30 yr for the northern Arabian Sea, 11 +/35 yr for the eastern Bay of Bengal (Andaman Sea) and 32 +/20 yr for the southern Bay of Bengal. Contrasting reservoir ages for these two basins are most likely due to differences in their thermocline ventilation rates.
    • Dendrochronology and Radiocarbon Dating Methods in Archaeological Studies of Scythian Sites

      Dergachev, Valentin A.; Vasiliev, S. S.; Sementsov, A. A.; Zaitseva, Ganna I.; Chugunov, K. A.; Sljusarenko, I. Ju (Department of Geosciences, The University of Arizona, 2001-01-01)
      We propose a new method of cross-dating the wood samples based on the classical methods of spectral estimation. This method uses the average cross-spectral density as a function of the relative position of the series. Because it is not sensitive to phase shifts in data it is appropriate for cross-dating samples originating from geographically distinct areas. The accuracy of cross dating depends on the integrity of the samples used, and in the case of well-preserved wood samples, the precision of relative age comparison may reach a single year. The method was tested on two dendrochronological series from Scythian barrows of known age in Southern Siberia: the Pazyryk barrows (the Altai Mountains) and the Dogee-Baary -2 burials (Western Sayan Mountains) separated by 450 km. The analysis has shown that the Pazyryk barrow is younger by 80 +/4 yr than the Dogee-Baary -2 burials. This result is in agreement with the new chronology of Scythian-related sites suggested for Southern Siberia and Central Asia.
    • 'Wiggle Matching’ Radiocarbon Dates

      Bronk Ramsey, Christopher; van der Plicht, Johannes; Weninger, B. (Department of Geosciences, The University of Arizona, 2001-01-01)
      This paper covers three different methods of matching radiocarbon dates to the "wiggles" of the calibration curve in those situations where the age difference between the 14C dates is known. These methods are most often applied to tree-ring sequences. The simplest approach is to use a classical Chi-squared fit of the 14C data to the 14C curve. This gives the calendar date where the data fit best and allows tests of how good the fit is. The only drawback of this method is that it is difficult to ascertain the uncertainty in the date found in this way. An extension of this technique uses a Monte-Carlo simulation to sample possible 14C concentrations consistent with the measurement made and for each of these possibilities performs a Chi-squared fit. This method yields a distribution of values in the calendrical time-scale, from which the overall dating uncertainty can be derived. A third, rather different approach, based on Bayesian statistics, calculates the relative likelihood of each possible calendar year fit. This can then be used to calculate a range of most likely dates in a similar way to the probability method of 14C calibration. The theories underlying all three methods are discussed in this paper and a comparison made for the fitting of specific model sequences. All three methods are found to give consistent results and the application of any one of them depends on the nature of the scientific question being addressed.
    • A Database System for Geochemical, Isotope Hydrological, and Geochronological Laboratories

      Suckow, Axel; Dumke, Ingolf (Department of Geosciences, The University of Arizona, 2001-01-01)
      We present a data model designed for laboratories in which many different methods are used. The main feature of the model is the recursive relationships of data records in the subsample table. This makes it possible to model all steps from the preparation of the sample to the final value and enables the raw data to be stored together with the final values, even if many preparation steps or many subsamples are involved. We show ways to adopt this basic model to laboratories with many years of data. The data model is extended to include laboratory records and attribute data, e.g. The geographical coordinates of the sampling site or links to the various projects for which the samples are used.
    • A Fresh Water Diet-Derived 14C Reservoir Effect at the Stone Age Sites in the Iron Gates Gorge

      Cook, Gordon T.; Bonsall, C.; Hedges, Robert E. M.; McSweeney, K.; Boronean, V.; Pettitt, Paul B. (Department of Geosciences, The University of Arizona, 2001-01-01)
      Human bones from single inhumation burials and artifacts made from terrestrial mammal (ungulate) bone found in direct association with the skeletons were obtained from the Stone Age site of Schela Cladovei situated just below the Iron Gates Gorge of the River Danube. The results of stable isotope analyses of the human bone collagen are consistent with a heavy dependence on aquatic protein while radiocarbon dating of the samples reveals an offset of 300-500 years between the two sample types, indicating a freshwater reservoir effect in the human bone samples. Since protein consumption is by far the major source of nitrogen in the human diet we have assumed a linear relationship between delta-15N and the level of aquatic protein in each individual's diet and derived a calibration for 14C age offset versus delta-15N which has been applied to a series of results from the site at Lepenski Vir within the gorge. The corrected 14C ages (7310-6720 BP) are now consistent with the previous 14C age measurements made on charcoal from related contexts (7360-6560 BP). In addition, the data indicate a change from a primarily aquatic to a mixed terrestrial/aquatic diet around 7100 BP and this may be argued as supporting a shift from Mesolithic to Neolithic. This study also has wider implications for the accurate dating of human bone samples when the possibility exists of an aquatic component in the dietary protein and strongly implies that delta-15N analysis should be undertaken routinely when dating human bones.