• Mass Spectrometric 14C and U-Th Measurements in Coral

      Burr, G. S.; Edwards, R. L.; Donahue, D. J.; Druffel, E. R. M.; Taylor, F. W. (Department of Geosciences, The University of Arizona, 1992-01-01)
      We discuss U-Th and 14C measurements in coral. Samples with U-Th dates in excess of 50 ka BP were chosen for study. Some bulk samples from this group have measurable 14C dates, which range from 30 ka to 43 ka BP. These can be explained by 0.5-2.5% contamination by modern carbon. This small amount of contamination can produce significant offsets in 14C dates of coral samples older than -10 ka. It may be undetectable in X-ray powder diffraction patterns. We describe a sample pretreatment that removes the modern carbon by selective dissolution and produces accurate 14C dates.
    • Measurement of 14C Concentrations of Stratospheric CO2 by Accelerator Mass Spectrometry

      Nakamura, Toshio; Nakazawa, Takakiyo; Nakai, Nobuyuki; Kitagawa, Hiroyuki; Honda, Hideyuki; Itoh, Tomozio; Machida, Toshinobu; Matsumoto, Eiji (Department of Geosciences, The University of Arizona, 1992-01-01)
      In order to measure the concentrations of anthropogenically influenced gases in the stratosphere, we have collected air samples from the lower stratosphere since 1985, by a balloon-borne cryogenic sampling method, developed at the Institute of Space and Astronautical Science (ISAS). Air samples of ~16 liters at STP were collected in the stratosphere at altitudes from 18.6 to 30.4 km, over the northeastern part of Japan (39.5 degrees N, 139-142 degrees E), on 1 September 1989. We conducted 14C analyses to study the vertical and horizontal air-mass movement in the stratosphere, and to investigate the air transport mechanism between troposphere and stratosphere. Carbon dioxide (containing a few mg carbon) was separated cryogenically from the air samples, and the 14C concentration of the CO2 was measured by a Tandetron accelerator mass spectrometer, using Fe-graphite targets prepared by reducing CO2 on Fe-powder with hydrogen in a Vycor tube at 650 degrees C. The 14C concentrations, expressed as Delta-14C, of CO2 were 267-309 per mil at altitudes of 21-30 km, and 134 per mil at 19-20 km. The Delta-14C values at 21-30 km were higher than those of the current tropospheric CO2, of around 80-200 per mil. The observed 14C concentrations, higher in the stratosphere than the troposphere, seem to be explained by large bomb-produced 14C inventories and/or high 14C production by cosmic rays, as well as weak vertical mixing of air masses in the stratosphere.
    • Measurements of Cosmogenic 14C Produced by Spallation in High-Altitude Rocks

      Jull, A. J. T.; Wilson, Amy E.; Burr, G. S.; Toolin, L. J.; Donahue, D. J. (Department of Geosciences, The University of Arizona, 1992-01-01)
      The production of radioisotopes at the Earth's surface by cosmic-ray effects has been discussed for many years. Only in the past few years, with the higher sensitivity provided by accelerator mass spectrometry (AMS) in detecting 10Be, 26Al and 36Cl, have the radioisotopes produced in this way been measured. We report here our measurements of cosmogenic 14C in terrestrial rocks at high altitude, and comparisons to other exposure-dating methods.
    • Participants

      Department of Geosciences, The University of Arizona, 1992-01-01
    • Possibilities for Reconstructing Radiocarbon Level Changes During the Late Glacial by Using a Laminated Sequence of Lake

      Goslar, Tomasz; Kuc, Tadeusz; Pazdur, Mieczysław F.; Ralska-Jasiewiczowa, Magdalena; Różański, Kazimierz; Szeroczynska, Krystyna; Walanus, Adam; Wicik, Bogumił; Więckowski, Kazimierz; Arnold, Maurice; et al. (Department of Geosciences, The University of Arizona, 1992-01-01)
      Laminated sediments of Gościąż Lake can be used as an independent source of material for calibrating the radiocarbon time scale. The varve chronology is based on three long cores from the deepest part of the lake, with one additional core from the second deepest part. From pollen and Cladocera spectra and stable isotope and chemical content sequences, we have determined the Allerød(AL)/Younger Dryas(YD) and Younger Dryas/Preboreal(PB) boundaries in the three long cores with relatively good accuracy, and have tentatively defined the AL/YD boundary in the fourth core. The Younger Dryas period contains at least 1520 varves, with 980 varves in fragments well replicated in all four cores. The duration of the Younger Dryas as recorded in sediments of Gościąż Lake corresponds well to the duration derived from 230Th/234U and 14C dates on Barbados corals, but disagrees with estimates from Soppensee, Lake Holzmaar and Swedish varves. Two AMS dates of terrestrial macrofossils from the PB and YD periods seem to fit both the data obtained for Swiss lake sediments and Barbados corals.
    • Possible Effects of Ozone Depletion on the Global Carbon Cycle

      Tsung-Hung, Peng (Department of Geosciences, The University of Arizona, 1992-01-01)
      The increase of UV-B radiation resulting from ozone depletion is considered to have damaging effects on marine ecosystems. A cutback of marine productivity would tend to reduce the oceanic uptake of atmospheric CO2. Box models of the global oceans based on the distribution of bomb-produced 14C are used to evaluate the possible effects of ozone depletion on the atmospheric CO2 concentration. The maximum effect presumably takes place if the ozone hole reduces the marine productivity to zero in the Antarctic Ocean. In a business-as-usual scenario of future CO2 emissions, the atmospheric CO2 partial pressure (pCO2) would increase by an additional 37 micro-atm over the course of the next century. This increase corresponds to 4.6% of the projected atmospheric pCO2 in the year 2090. However, if the damaging effect caused by the destruction of the stratospheric ozone layer is assumed to lower the productivity over the Antarctic Ocean by 10%, the atmospheric pCO2 would rise by less than 3 micro-atm over the expected atmospheric level in the next century.
    • PRIME Lab: A Dedicated AMS Facility at Purdue University

      Elmore, David; Rickey, F. A.; Simms, P. C.; Lipschutz, M. E.; Mueller, K. A.; Miller, T. E. (Department of Geosciences, The University of Arizona, 1992-01-01)
      A new facility for accelerator mass spectrometry has been established at Purdue University. First results have been obtained for 10Be and 36Cl, and several internal research projects have been initiated. Plans are to become a national AMS facility to serve the Earth and planetary science communities for the full range of cosmogenic radionuclides.
    • Progress in AMS Measurements at the LLNL Spectrometer

      Southon, J. R.; Vogel, J. S.; Trumbore, S. E.; Davis, J. C.; Roberts, M. L.; Caffee, M. W.; Rinkel, R. C.; Proctor, I. D.; Heikkinen, D. W.; Berno, A. J.; et al. (Department of Geosciences, The University of Arizona, 1992-01-01)
      We report on the present status of the Lawrence Livermore AMS spectrometer, including sample throughput and progress towards routine 1% measurement capability for 14C, first results on other isotopes and experience with a multisample high-intensity ion source.
    • Quantifying Background Components of Low-Level Gas Proportional Counters

      Theodórsson, Páll (Department of Geosciences, The University of Arizona, 1992-01-01)
      I discuss background components of low-level gas proportional counters and show how each component can be estimated based on available data. For more reliable background analysis, further studies are suggested. Based on new information, a generation of low-level gas proportional counting systems for radiocarbon dating may emerge with lower and more predictable background.
    • Radiocarbon AMS Dating of Pollen Extracted from Peat Samples

      Brown, T. A.; Farwell, G. W.; Grootes, P. M.; Schmidt, F. H. (Department of Geosciences, The University of Arizona, 1992-01-01)
      We present 14C AMS measurements and discuss the extraction procedure used on pollen extracted from peat samples. Microscopic examination of the extracts shows that the procedure is sufficient to remove most non-pollen materials and results in an extract that is composed predominantly of pollen. The 14C dates that we obtained for pollen extracts from peat samples associated with the Mazama Ash layer are consistent with the range of bulk-sample dates obtained by others in previous studies. The limited measurement time and resulting precision (+/100 yr) of these initial measurements restrict our ability to draw firm conclusions from a comparison of the pollen extract dates with previous bulk-sample dates. We intend to adjust our procedure to improve the rejection of non-pollen materials and to increase the precision of our 14C measurements on pollen extracts from peat samples in future studies.
    • Radiocarbon Announces the Publication of the Following Special Issues:

      Department of Geosciences, The University of Arizona, 1992-01-01
    • Radiocarbon Anomalies Observed for Plants Growing in Icelandic Geothermal Waters

      Andersen, G. J.; Heinemeier, Jan; Nielsen, H. L.; Rud, Niels; Thomsen, M. S.; Johnsen, Sigfús; Sveinbjörnsdóttir, Árný; Hjartarson, Arni (Department of Geosciences, The University of Arizona, 1992-01-01)
      We have studied plant remains in thick beds of lacustrine sediments in the upper part of the Markarfljót drainage area in southern Iceland. We collected small samples of plant species from the same horizon and 14C dated them at the Aarhus AMS Dating Laboratory. Terrestrial plants yielded an age of 9 ka BP, whereas aquatic moss (Fontinalis antipyretica Hedw.) yielded the surprisingly old 14C age of 16 ka BP. We believe the age of the terrestrial plants reflects the true age of the sediment. The anomalously old 14C age of the aquatic moss may be an effect of geothermal water on the moss, as the area is known to be geothermally active today. Modern aquatic moss growing in geothermal water showed a similar 14C anomaly, with measured ages ranging from 6 to 8 ka BP, which may be explained by the equally old ages measured for the corresponding water samples. The 14C content of geothermal springs and neighboring rivers in the area ranges from 9 to 50 pMC, equivalent to an apparent age of 20-5.5 ka BP.
    • Radiocarbon Chronology of Late Neolithic Settlements in the Tisza-Maros Region, Hungary

      Hertelendi, Ede; Horváth, Ferenc (Department of Geosciences, The University of Arizona, 1992-01-01)
      We investigated chronological questions of five Late Neolithic settlements in the Hungarian Tisza-Maros region. Fifty new radiocarbon dates provide an internal chronology for the developmental phases of the tell settlements, and place them into the wider framework of the southeastern European Neolithic. An example is presented of how a unique type of stratigraphic excavation helps the interpretation of radiocarbon data, which are in contradiction with the stratigraphic position of the samples.
    • Radiocarbon Dating of Anodonta in the Mojave River Basin

      Berger, Rainer; Meek, Norman (Department of Geosciences, The University of Arizona, 1992-01-01)
      A 450-year correction is required to make Anodonta 14C dates comparable to 14C dates on other materials in the Mojave River basin. The internal stratigraphic consistency of 34 conventional 14C dates on Anodonta in this drainage basin indicates that such dates are usually reliable. The validity of most conventional 14C dates in the Mojave River basin may be a product of the basin's crystalline bedrock in a region usually typified by thick Paleozoic carbonate sections.
    • Radiocarbon Dating of Bone Osteocalcin: Isolating and Characterizing a Non-Collagen Protein

      Ajie, H. O.; Kaplan, I. R.; Hauschka, P. V.; Kirner, Donna; Slota, P. J. (Department of Geosciences, The University of Arizona, 1992-01-01)
      Osteocalcin, a non-collagen bone-matrix protein, has been examined as a possible source of autochthonous 14C data in fossil bones where collagen has been seriously degraded. Extraction procedures for osteocalcin yield a wellcharacterized product that can be clearly distinguished from collagen. The Gla content indicates that osteocalcin is present in the fossil bones at levels similar to the range present in modern bone. However, it appears to be extracted primarily as proteolytic polypeptide fragments rather than as an intact protein. Concordant 14C determinations are obtained on osteocalcin and gelatin extracts from the same bone when the collagen is relatively well preserved. However, increasing discordances in the 14C values of the osteocalcin and gelatin fractions are associated with reduced concentrations of the gelatin extract in the bone.
    • Radiocarbon Dating of Copper-Preserved Organics

      Beukens, R. P.; Pavlish, L. A.; Hancock, R. V.; Farquhar, R. M.; Wilson, G. C. (Department of Geosciences, The University of Arizona, 1992-01-01)
      The small but vital role of 14C dating in archaeometric research is clearly shown in the copper project reported herein. The 14C ages place a time perspective on the "Old Copper Culture Complex," substantiating early Libby dates that had been questioned. The respective roles of INAA, PGE and Pb isotope work are briefly summarized. A long tradition of heat treatment from Paleoindian stone to Archaic copper is suggested.
    • Radiocarbon Dating of Fourteen Dead Sea Scrolls

      Bonani, Georges; Ivy, Susan; Wölfli, Willy; Broshi, Magen; Carmi, Israel; Strugnell, John (Department of Geosciences, The University of Arizona, 1992-01-01)
      The name Dead Sea Scrolls refers to some 1200 manuscripts found in caves in the hills on the western shore of the Dead Sea during the last 45 years. They range in size from small fragments to complete books from the holy scriptures (the Old Testament). The manuscripts also include uncanonized sectarian books, letters and commercial documents, written on papyrus and parchment. In only a few cases, direct information on the date of writing was found in the scrolls. In all other cases, the dating is based on indirect archaeological and paleographical evidence. To check this evidence, radiocarbon ages of 14 selected scrolls were determined using accelerator mass spectrometry. The calibrated radiocarbon ages agree well, except in one case, with the paleographic estimates or the specific dates noted on the scrolls.
    • Radiocarbon Dating of Groundwater in a Confined Aquifer in Southeast Arizona

      Robertson, Frederick N. (Department of Geosciences, The University of Arizona, 1992-01-01)
      Radiocarbon, delta-13C and major-element data were used to construct a geochemical framework for interpretation of the hydrological flow system in the lower San Pedro basin, southeastern Arizona, USA. The 14C and major-element data show a regional confined aquifer that extends throughout most of the basin. Groundwater ages, after correcting for chemistry, are greater than 10 ka BP. The groundwater ages do not increase in a downvalley direction, the assumed direction of groundwater movement in most intermontane basins in the region, but along general flow paths normal to the mountains toward the center of the basin. Recharge to the confined aquifer originates from infiltration of precipitation and runoff near the alluvium-mountain contact along the Galiuro Mountains and is discharged by evapotranspiration along the center of the basin. The hydrogeological concept of the 14C model is supported by the water chemistry and by the mass transfer defined by the chemical model. Weathering of primary silicate minerals in the confined aquifer does not occur downvalley, but only along the direction of flow. Hydraulic conductivities calculated for the aquifer from 14C velocities are about an order of magnitude slower than those determined through hydrological methods. The lower hydraulic-conductivity values are attributed to a thick confining layer overlying the discharge area along the San Pedro River.
    • Radiocarbon Dating of Iron Artifacts

      Cresswell, R. G. (Department of Geosciences, The University of Arizona, 1992-01-01)
      During the late 1960s, N. J. van der Merwe (1969) obtained 14C measurements on 11 iron pieces, ranging in carbon content from medium carbon (0.22%) wrought iron (1.2 kg used) to high carbon (3.2%) cast iron (30 g), thereby demonstrating the feasibility of the technique for 14C dating iron. In the early 1980s, Sayre et al. (1982) repeated two of van der Merwe's measurements, and carried out two analyses on a recently rediscovered Elizabethan(?) iron bloom. Thirty grams were required of this medium carbon wrought iron to obtain an age using small proportional counters. A number of iron artifacts have recently been analyzed by accelerator mass spectrometry (AMS) at IsoTrace. Samples ranged in size from 3.4 g of a medium carbon (approximately equal to 0.4%) wrought iron bloom to 274 mg for a high carbon (1.79%) wootz steel fragment. AMS now permits analysis of samples that previously were too small or too valuable to be analyzed. For larger samples, multiple analyses can reveal variations that may aid the evaluation of sample history.
    • Radiocarbon Dating of Lime Fractions and Organic Material from Buildings

      Van Strydonck, Mark J. Y.; van der Borg, Klaas; De Jong, Arie F. M.; Keppens, Eduard (Department of Geosciences, The University of Arizona, 1992-01-01)
      We have dated carbonate fractions and organic material from different types of mortar from two sites in Belgium. We demonstrate the difficulties in obtaining good dates from carbonate samples. We also discuss the need for new types of dating material when the mortar comes from contaminated and disturbed sites, where even charcoal can yield aberrant results.