• Ground-Water Circulation in the Meade Thrust Allochthon Evaluated by Radiocarbon Techniques

      Muller, A. B.; Mayo, A. L. (American Journal of Science, 1983-01-01)
      The Meade thrust, in southeastern Idaho, is a major element of the Western Overthrust Belt. The allochthon is of geo-economic importance both as a potential hydrothermal area and as the principal mining area within the Western Phosphate Field. To assist in the development of these two resources, an understanding of the regional ground-water circulation was sought. Geologic and hydrologic data from boreholes in this area are virtually nonexistent. Waterwell development in the area has not occurred because of the abundance of springs and only a few hydrocarbon exploration boreholes have been drilled. Thus, the problem lends itself to evaluation by isotope hydrologic and geochemical methods. Ten springs from within the thrust block and around its periphery were sampled for major ions, 2H/18O, and 14C/13C analysis. Data from these analyses and from field geologic evidence have identified two distinct flow regimes within the Meade thrust allochthon. Shallow flow systems lie above the impermeable Phosphoria Formation, usually within a few hundred meters of the surface. Most of the spring waters from this system are recent and cool. In all cases, they have mean subsurface residence times of less than a few hundred years. The deeper flow systems which lie below the Phosphoria formation are hydraulically isolated from the shallow system. Warm waters from these springs have 14C contents suggesting mean ground-water residence times on the order of 15,000 years. Although these waters could have circulated to as deep as 1900m, 2H/18O results show that high temperatures were never reached. There is no evidence to suggest that water from beneath the Meade thrust has contributed to the circulation in the allochthon.