• REINFORCEMENT LEARNING FOR HYBRID BEAMFORMING IN MILLIMETER WAVE SYSTEMS

      Peken, Ture; Tandon, Ravi; Bose, Tamal; Univ Arizona, Dept Electrical and Computer Engineering (International Foundation for Telemetering, 2019-10)
      The use of millimeter waves (mmWave) for next-generation cellular systems is promising due to the large bandwidth available in this band. Beamforming will likely be divided into RF and baseband domains, which is called hybrid beamforming. Precoders can be designed by using a predefined codebook or by choosing beamforming vectors arbitrarily in hybrid beamforming. The computational complexity of finding optimal precoders grows exponentially with the number of RF chains. In this paper, we develop a Q-learning (a form of reinforcement learning) based algorithm to find the precoders jointly. We analyze the complexity of the algorithm as a function of the number of iterations used in the training phase. We compare the spectral efficiency achieved with unconstrained precoding, exhaustive search, and another state-of-art algorithm. Results show that our algorithm provides better spectral efficiency than the state-of-art algorithm and has performance close to that of exhaustive search.
    • REMOTE HEART MONITORING VIA MEDICAL TELEMETRY

      Lee, Hua; Radzicki, Vincent R.; Rajagopal, Abhejit; Univ California Santa Barbara, Dept Electrical and Computer Engineering (International Foundation for Telemetering, 2019-10)
      Today, a wide range of heart conditions can be monitored remotely with relatively inexpensive passive sensing technologies, enabling the potential for long-term monitoring and prognosis of patient state under representative environmental stimuli. A medical telemetry system that can incorporate such passive measurements and provide key diagnostic information to medical professionals would provide tremendous value to patients via quantitative and personalized healthcare. This paper presents an overview of passive sensing methods that could be utilized in a medical telemetry system for remote heart monitoring of patients. While active systems are another attractive option, they impose additional constraints on the system that require careful calibration, expert control, and more complex instrumentation. The methods presented here are based on low-cost, sensor technology with the potential to greatly improve long-term non-invasive, heart-health monitoring.
    • RESILIENT PNT / TSPI ALTERNATIVE SOLUTIONS FOR TELEMETRY DURING GNSS OUTAGE TEST SCENARIOS

      Fischer, John; Perdue, Lisa; Orolia (International Foundation for Telemetering, 2019-10)
      GNSS is key to effective situational awareness, providing critical Positioning, Navigation and Timing (PNT) telemetry data for mobile military operations. Yet GPS/GNSS jamming and spoofing attacks are on the rise. The combination of low-cost hardware, open source software, and tutorials on YouTube have fostered the proliferation of these malicious acts. Beyond intentional disruption, other factors such as environmental conditions and conflicts with other electronic systems can result in unreliable or even unavailable GNSS data. The disruption of GNSS for increasing periods of time through jamming/spoofing must now be an essential test component in most test scenarios today. How can one still provide reliable Time-Space Position Information (TSPI) during periods of GNSS denial? Key mobile military operations that rely on continuous and trusted PNT telemetry data from GNSS include: SatCom on the Move (SOTM), Command, Control, Communications, Computer, Intelligence, Surveillance and Reconnaissance (C4ISR), Airborne Communications Relay, Synthetic Aperture Radar, and Combat Search and Rescue (CSAR). Techniques and technologies used in battlefield systems to provide alternative sources of PNT data during a GNSS outage, can also be used on the test range. This paper will identify technologies, best practices and strategies for GNSS jamming/spoofing detection and protection systems and testing protocols to maintain a state of PNT readiness.
    • SCALABLE TRANSMISSION AND DECODING OF SPACE PACKETS FOR REMOTE SATELLITE IMAGE BROWSING

      Oh, Han; Chang, Jae Young; Kim, Jin-Hyung; Choi, Hae-Jin; Satellite Operation and Application Center, Korean Aerospace Research Center; Future and Converging Technology Research Division, Korean Aerospace Research Center (International Foundation for Telemetering, 2019-10)
      The Consultative Committee for Space Data System (CCSDS) defines a standard for the data compression algorithm applied to the image data from payload instruments. In the CCSDS image data compression (CCSDS-IDC) standard, an image is encoded using a three-level two-dimensional DiscreteWavelet Transform (DWT) and the Bit-Plane Encoder (BPE). Compared to the JPEG2000 standard, the compression performance is reported to be similar at high bit rates with much lower complexity. However, its lack of highly scalable features supported by JPEG2000 hinders smooth browsing of the high-resolution satellite images. In this work, a method of quickly accessing a region of interest in a high-resolution satellite image is introduced. It utilizes parallel processing and the structure of the space packets which contain the strip-based codestream. This method is particularly effective for remote satellite image browsing and the study demonstrates its performance using KOMPSAT (Korea Multi-Purpose Satellite)-3A images.
    • SOFTWARE CONVERSION OF LEGACY RECORDING FORMAT TO IRIG 106 CHAPTER 10 FILE

      Graham, Richard A., Jr.; Shepherd, Steven G.; US Navy, NSWC Corona (International Foundation for Telemetering, 2019-10)
      This paper examines how to convert files recorded on a legacy recorder to an IRIG 106 Chapter 10 file.
    • STANDARDIZED NETWORKED TELEMETRY USING EXISTING COTS RADIO MODULES - IpoTm

      O’Connell, Ray; RoboComAI (International Foundation for Telemetering, 2019-10)
      The T&E ranges require two-way networked communications to provide gains in critical areas including: test efficiency, safety, cost savings and spectrum efficiency. The development of a network compatibility module which can accommodate networked telemetry standards while using existing COTS transmitter and receiver components has multiple benefits to the T&E test community. This component based approach to networked telemetry has the additional benefit of allowing new technology to be readily adopted for networking applications. This paper reviews the progress made in the development of a standardized component based networking telemetry capability as well as other networked telemetry radio systems.
    • TELEMETRY ON WILDCAT FORMULA RACING VEHICLE

      Marcellin, Michael; Tan, Nicolas; Univ Arizona, Wildcat Formula Racing (International Foundation for Telemetering, 2019-10)
      The Wildcat Formula Racing Team of the University of Arizona participates in an annual engineering design competition where students compete with small formula-style racing cars. One of the challenges we face is to provide justification of our design choices to the judges. To establish means of collecting data used as evidence and analysis, we use a mixture of automotive sensors and electronic sensors to be transmitted onto an external microcontroller, an Arduino. The data will then be stored locally and broadcasted from the vehicle to the pit with a transceiver module for post-race data analysis, as well as feedback for the team.
    • TELEMETRY SYSTEM FOR MONITORING STRESS AND VIBRATIONS ON AMUSEMENT PARK RIDES

      Marcellin, Michael; Collett, Anthony; Ma, Tiffany; Craddock, Zane; Garcia, Gerardo; George, Charles; Univ Arizona, Dept Electrical and Computer Engineering (International Foundation for Telemetering, 2019-10)
      On amusement park rides, vibrations against the rails of the track and the cars’ wheels can strain and damage the track. This is especially true for older coasters, whose tracks have worn significantly over time. While manual inspection of the track is necessary, an automated system that monitors the stress on the track will help detect anomalies, ensuring a safe experience for the passengers. We have designed a system of sensors that can monitor these vibrations. Sensors placed on a segment of track will measure the lateral and vertical vibrations, wirelessly transmitting the level of strain on the track to a base station. If vibrations reach a threshold level, the base station will be alerted of excessive strain. The system will create a graph of points where vibration is worse than other points, to pinpoint what areas need to be fixed the most. This will decrease maintenance costs and ensure increased safety for patrons of these rides.
    • TELEOPERATED ROBOTIC ARMS WITH OPEN AND CLOSED LOOP CONTROL SYSTEMS

      Kosbar, Kurt; Verbrugge, Eli; Dahlman, Brian; Missouri University of Science and Technology (International Foundation for Telemetering, 2019-10)
      This paper examines the usage of telemetry for the six degrees of freedom robotic arm designed to compete on a mars rover in the 2019 University Rover Challenge. The arm utilizes three microcontrollers to receive control commands and translates them directly to motor signals for the six brushed DC motors. The usage of the 32-bit microcontrollers facilitates inverse kinematics, an intuitive process that allows commands to be sent as 3D coordinates to the arm, ensuring fine control for arm manipulation. Telemetry is transmitted from the rover to a remote base station over a 900 MHz RF link, using two omnidirectional cloverleaf antennas. Communication between the embedded systems is achieved with the ethernet User Datagram Protocol standard. This ensures seamless transferal of commands from the driver’s joystick to the arm, and a stream of telemetry containing motor currents, positional values, and limit switch states - a necessity for the open and closed loop control systems.
    • TEST METHODS AND RESULTS FOR ADAPTIVE EQUALIZERS

      Hill, Terry; Quasonix (International Foundation for Telemetering, 2019-10)
      Multipath distortion has been a major source of data corruption in aeronautical telemetry signals for decades. In recent years, however, adaptive equalizers have begun to appear in telemetry receivers. These equalizers offer the promise of mitigating or even eliminating the damage done by the multipath channel, and many ranges are adopting their use. Unfortunately, there have not been any standardized tests by which to quantify the efficacy and limitations of adaptive equalizers. This paper presents a generalized test methodology for making a quantitative performance assessment of any adaptive equalizer, along with representative test results for one particular adaptive equalizer.
    • Testing the Reliability and Flexibility of Digitizers adapting the RF/IF signals over IP applications using a testbed Platform.

      Gonzalez, Virgilio; Sandoval, Jose Carlos; Elahi, Mirza; Corral, Pabel; Yasuda, Susumu; Univ Texas, Dept Electrical and Computer Engineering; White Sands Missile Range, U.S. Army Test and Evaluation Command (International Foundation for Telemetering, 2019-10)
      Many disadvantages from physical limitations in RF Telemetry can now be eliminated using RF over IP Networks. Digitizers mitigate the problem of signal degradation that RF has due to physical restrictions and provide reliability and flexibility to the signal. The digitizers are also able to preserve both frequency and timing characteristics, and then accurately reconstructing the original Telemetry signals to enable processing, recording or retransmission at another location. The digitizers along with the software-defined radios forms a flexible testbed platform which enables us to simulate both communication systems to qualify and quantify their behavior, while studying the interference between systems. In addition, quantization of noise is a critical parameter to determine the bit error rate in the testbed. Digitizers can be configured at a certain bandwidth and additional gain, in order to make this layer almost a transparent transmission.
    • THE EFFECTS OF LOSSY FREQUENCY-DOMAIN EEG COMPRESSION ON CROSS-FREQUENCY COUPLING ANALYSIS

      Creusere, Charles D.; Phillips, Andrew J.; New Mexico State University, Klipsch School of Electrical and Computer Engineering (International Foundation for Telemetering, 2019-10)
      This paper analyzes lossy frequency-domain compression in the context of cross-frequency coupling (CFC) analysis of electroencephalograph (EEG) signals. The approach used here for CFC analysis involves a low-complexity signal analysis block followed by a constant false alarm rate (CFAR) detection algorithm. The lossy frequency-domain compression is achieved via the threshold coding method for frequency truncation using the discrete cosine transform (DCT). This method is found to increase CFC detection rates by as much as 30% to 50% depending on the amount of Gaussian noise in the signal and the selected probability of false alarm. Further analysis indicates that these significant improvements in CFC detection rates are due to adaptive frequency-domain noise reduction. These results bode well for lossy frequency-based EEG compression schemes which can greatly improve transmission speeds and decrease storage space requirements while simultaneously enhancing CFC analysis capabilities.
    • The Good, The Bad, and The Non-Circular Signals

      Bose, Tamal; Tsang, Stephanie D.; Samuel, Al; Univ Arizona, Dept Electrical and Computer Engineering (International Foundation for Telemetering, 2019-10)
      Second-order (SO) non-circularity is a statistical property that is used to classify signals. Signals with SO non-circularity are extensively used in communication and radar systems. The SO non-circularity property is generally useful in the application of array processing techniques for extending antenna apertures. Exploiting this non-circularity property for a multi-faceted set of communication-type and radar-type signals is the objective of this study. For a given type of signal, the circularity quotient and its properties are tested and evaluated in terms of parameters such as the modulus of its phase, complex covariance, pseudo-variance, the angle orientation of the ellipse, its eccentricity, and other relevant properties are calculated. A geometrical interpretation for the circularity quotient and the correlation coeficient is used to derive the bounds for circularity.
    • THREE-DIMENSIONAL MOTION ESTIMATION AND IMAGE FORMATION WITH ACTIVE ARRAYS

      Lee, Hua; Radzicki, Vincent R.; Univ California Santa Barbara, Dept Electrical and Computer Engineering (International Foundation for Telemetering, 2019-10)
      For target imaging and tracking systems, a key signal processing task is motion estimation. Specifically, the trajectory of a maneuvering target undergoing rigid body motion can be described through a series of translational and rotational transformations. Estimation of these motion parameters provides the tracking system enough information to calculate the targets trajectory over time. Determining the rotational motion to a high accuracy is also very important, as the imaging system can then form an image of the target over multiple aspect angles and thus increase the resolution performance. This paper focuses on algorithm development and performance limitations for motion estimation and image formation using active sensing arrays.
    • USING TENA AND JMETC FOR TELEMETRY APPLICATIONS

      Hudgins, Gene; Secondine, Juana; TENA Software Development Activity (SDA) (International Foundation for Telemetering, 2019-10)
      Often, TM requires operators on location with receive system(s) or at a remote console (with a remote antenna control unit), resulting in TDY for operators and possibly a shortage of operators to support all scheduled operations. A remote-control capability could eliminate existing personnel requirements at both the local system antenna site as well as the control facility, greatly reducing operational costs. TENA provides for real-time system interoperability, as well as interfacing existing range assets, C4ISR systems, and simulations; fostering reuse of range assets and future software systems. JMETC is a distributed, LVC capability using a hybrid network solution for all classifications and cyber. TENA and JMETC allow for the most efficient use of current and future TM range resources via range resource integration, critical to validate system performance in a highly cost-effective manner.
    • VALIDATION PROTOCOL - THE MISSING PUZZLE PIECE

      Moskal, Jakub; Whittington, Austin; Morgan, Jon; Kokar, Mitch; Abbott, Ben; VIStology Inc; Southwest Research Institute; Edwards AFB (International Foundation for Telemetering, 2019-10)
      In multi-vendor T&E systems, a single hardware vendor cannot anticipate the dependencies on the settings from hardware manufactured by other vendors, or the systemic constraints that are specific to a particular customer. The T&E community has recognized the fact that MDL and TMATS XML are not sufficient to addresst his problem alone, and that there is a need for a separate, constraints language. Constraints written in such a language can be validated by a third party validation engine, without relying on any particular vendor’s software. To this end, we developed the concept of TACL, a candidate for the standard constraint language, and demonstrated it with a reference implementation of a TACL engine integrated with the iNET System Manager. In this paper, we argue that this integration should be standardized in the form of a Validation Protocol in order to turn the existing system into a loosely-coupled, standards-based architecture.
    • VERIFICATION TECHNIQUES FOR SPECTRUM USAGE IN SPACE, TIME AND FREQUENCY

      Madon, Phiroz; Ziegler, Robert; Samtani, Sunil; Koval, Aleksey; Harasty, Daniel; Triolo, Anthony; Shen, Qiong; Agarwai, Anjali; Galletti, Michele; Gadgil, Shrirang; et al. (International Foundation for Telemetering, 2019-10)
      A Spectrum Usage Measurement System (SUMS) characterizes the actual use of telemetry spectrum at DoD flight test ranges. The system tracks daily usage in a measurements repository, which becomes an invaluable resource, allowing querying, reporting and analytics, for defending against future spectrum sell-offs, and for providing insights into improving spectrum efficiency. The question is how do we quantify spectrum usage in space, time and frequency? And how do we certify “actual usage”, as opposed to simple assignment and claims that the spectrum was planned to be used? We discuss techniques for addressing these challenges. The system draws upon spectrum mission planning data, a network of sensors of various types, and a correlation algorithm. A scaling problem wrt characterizing the spatial extent of the spectrum usage is solved. Correlation, using heterogeneous data sources at a test range with numerous RF emissions prompts a heuristics and flexible rules-based approach.
    • VIBRATION ANALYSIS WITH AN OPTICAL TRACKING SYSTEM (SISTRO)

      Kusumoto, Andre Yoshimi; Oliveira Leite, Nelson Paiva; Guarino Vasconcelos, Luiz Eduardo; Netto Lahoz, Carlos Henrique; Instituto de Pesquisas e Ensaios em Voo (IPEV); Instituto Nacional de Pesquisas Espaciais (INPE); Instituto Tecnológico de Aeronáutica (ITA) (International Foundation for Telemetering, 2019-10)
      SisTro validation, required the execution of several Pit Drop tests. The determination of the store trajectory in real time, required the usage of advanced computer vision techniques for photogrammetric measurements and a novel optical calibration and error minimization process. As results the 2D image tracking of the in-view reference points could be determined with sub-pixel resolution. Then, in addition to providing the desired trajectory, it was able to compute the wing and pylon vibrations and its damping coefficient. Such capability allows us to develop a more accurate CFD simulation models by the incorporation of the aircraft Flexible-Body Mechanics model into such simulation runs. In this paper it will be presented the development of SisTrO sub-pixel tracking process and the pit drop test results, that includes the measurement of the wing and pylon vibrations and its associated damping.
    • WHY ARE WE HATIN’ ON ARTM CPM?

      Temple, Kip; Air Force Test Center, Edwards AFB (International Foundation for Telemetering, 2019-10)
      Why hasn’t the Aeronautical Mobile Telemetry community adopted IRIG 106 compliant ARTM CPM as their preferred waveform for the transmission of telemetry data? Telemetry receivers in the market place today exhibit gains in detection efficiency and resynchronization speed that far exceed products of just a few years ago. Past papers have shown the link performance comparison between the new waveform standard SOQPSK-TG and ARTM CPM has narrowed since ARTM CPM was first standardized. This paper will present the latest performance comparison between these two waveforms during a controlled test throughout various flight conditions. The testing is presented and performance comparisons are made between the waveforms. This comparison will use traditional methods combined with several new performance metrics presented in this paper. To conclude, Link Availability, the measure of overall link performance is presented illustrating how closely these waveforms perform.