• LTE-BASED AERONAUTICAL MOBILE TELEMETRY - LAB AND FIELD TEST EXPERIMENTS

      Beck, Eric; Erramilli, Shobha; Habiby, Sarry; Johnson, William; Kogiantis, Achilles; Maung, Nan; Rege, Kiran; Sayeed, Zulfiquar; Triolo, Anthony; Young, Jeffrey; et al. (International Foundation for Telemetering, 2019-10)
      Aeronautical mobile telemetry (AMT) based on 3GPP’s LTE standard is implemented in a proof-of-concept system. The solution tackles the very high Doppler shifts expected in flight tests using an appliqué that can be inserted between the transmit/receive ports of the Test Article (TA) and the antennas. This appliqué estimates the Doppler shift and proactively compensates for it on the uplink signal being transmitted by the TA. The overall system has been tested under different operational conditions in a laboratory setup as well as in the field. In the laboratory setup, the desired operating conditions are created with a set of Software-Defined-Radio-based channel emulators coupled with a computer to control their behavior. In order to carry out field tests, an operational LTE network has been created at Edwards Air Force Base (EAFB) with two base stations, backhaul links, and a core network. In this paper, we provide descriptions of both laboratory and field test setups as well as the results of several tests that have been carried out to date. The results of lab and field tests lend strong support to the viability of this AMT solution.
    • CONTROL FAILURES IN AN UNMANNED AERIAL SYSTEM AND THE POTENTIAL FOR STATELESS CONTROL

      Marcellin, Michael; Norland, Kyle; Univ Arizona, Dept Electrical and Computer Engineering (International Foundation for Telemetering, 2019-10)
      To participate in the 2019 SUAS competition, an Unmanned Aerial System (UAS), was built. Unfortunately, several critical failures occurred, including an unwanted circling behavior, and an unnecessary self-crash. The analysis of both behaviors revealed surface level errors in the scripts and devices that were used, but also a deeper flaw in the architecture of state based behaviors and conditional state transitions. To address these failures, an alternative architecture based around stateless controls was designed and tested. It successfully resolved the issues, and seems to hold promise as an alternative control system architecture, especially in non-linear environments.
    • LIDAR COLLISION AVOIDANCE SYSTEM WITH AUDIO FEEDBACK FOR VISUALLY IMPARIED INDIVIDUALS

      Lee, Hua; Maravilla, Julian; Shimada, Haruka; Univ California Santa Barbara, Dept Electrical and Computer Engineering (International Foundation for Telemetering, 2019-10)
      In this paper, we present the 4th-generation, light-weight low-power collision avoidance system. For this new version, the ultrasound transmitter of the data-acquisition component is replaced by a Lidar to avoid multi-paths in complex environments. The estimate of the target range is quantized into a frequency bin and represented by acoustic waveforms within the human hearing range. The bearing angle of the target is utilized to produce the temporal offset between the twin channels of the corresponding acoustic waveforms. This wearable and hearable device is designed for real-time navigation for the blind.
    • CHANNEL ESTIMATION USING GAUSSIAN PROCESS REGRESSION

      Kim, Taejoon; Perrins, Erik; Simeon, Richard; Univ Kansas, Dept Electrical Engineering and Computer Science (International Foundation for Telemetering, 2019-10)
      Gaussian process (GP) regression can be used in the interpolation of observed periodic channel estimates in OFDM transmission systems over both time and frequency in small-scale fading environments. Previous GP regression studies used the popular radial basis function as the GP kernel. In this study, we examine the performance of GP regression using a Bessel kernel with a semi-static hyperparameter vector. Results show that GP regression using the Bessel kernel outperforms the radial basis kernel, as well as traditional interpolation methods such as cubic spline and FIR interpolation, especially when training symbols are spaced far apart in time with respect to the channel coherence time.
    • AN ENGINEER’S GUIDE TO CHAPTER 7 PACKET TELEMETRY TRANSPORT

      Hoffman, Richard W.; GDP Space Systems (International Foundation for Telemetering, 2019-10)
      Chapter 7 of IRIG106-17 defines the means of encapsulating packetized data within a PCM telemetry stream, ostensibly for transport from a platform to a processing location, via that platform’s conventional means of PCM transmission. While providing a mechanism for bridging platforms via the telemetry stream, a myriad of use-cases evolve, adding varying degrees of complexity to an implementation. Understanding these use-cases, their challenges, and some of the potential solution methodologies helps to determine the best implementation for a given mission. This paper seeks to present some of these aforementioned points, some obvious, and others uncovered over the course of working with solutions-seekers, in an effort to help cultivate and shape the growing demand for packet telemetry transport bridging.
    • AN INTRODUCTION TO IRIG-106-17 FEATURES AND ASSOCIATED COMMAND STRUCTURES

      Cook, Paul; Curtiss-Wright, Aerospace Instrumentation (International Foundation for Telemetering, 2019-10)
      The RCC Telemetry group publishes various documents and IRIG-106 aims to standardize telemetry solutions. Such efforts help to ensure that ranges - and other flight test users - have access to a range of interoperable equipment. The standard is updated every two years with the latest version being IRIG-106-17. The release of IRIG-106-17 means flight test engineers now have a new list of transmitter performance features to understand and to track during the daily operations. This paper provides an overview of these new features as well as the associated command structure as published in the standard.
    • ANALYSIS OF INERTIAL MEASUREMENT DATA FROM A MODEL ROCKET PAYLOAD

      Long, David G.; Francis, Benjamin; Brigham Young University, Dept Electrical and Computer Engineering (International Foundation for Telemetering, 2019-10)
      As part of a student-educational experience in telemetry, beginning undergraduates build, program, and test small payloads flown in model rockets. These payloads, nicknamed “femtosats,” collect and transmit real time telemetry on the rocket’s performance. The femtosats measure the inertial motions of the model rocket, providing info to extract the flight path. The individually student-designed femtosat circuit board includes a simple inertial measurement sensor that collects acceleration data in the form of x, y, z acceleration vectors which are transmitted in real-time to a radio ground station. The focus of this paper is the collection and analysis of the data from the telemetered inertial measurement sensor and how it can be interpreted and applied in simple model rocket motion analysis.
    • REMOTE HEART MONITORING VIA MEDICAL TELEMETRY

      Lee, Hua; Radzicki, Vincent R.; Rajagopal, Abhejit; Univ California Santa Barbara, Dept Electrical and Computer Engineering (International Foundation for Telemetering, 2019-10)
      Today, a wide range of heart conditions can be monitored remotely with relatively inexpensive passive sensing technologies, enabling the potential for long-term monitoring and prognosis of patient state under representative environmental stimuli. A medical telemetry system that can incorporate such passive measurements and provide key diagnostic information to medical professionals would provide tremendous value to patients via quantitative and personalized healthcare. This paper presents an overview of passive sensing methods that could be utilized in a medical telemetry system for remote heart monitoring of patients. While active systems are another attractive option, they impose additional constraints on the system that require careful calibration, expert control, and more complex instrumentation. The methods presented here are based on low-cost, sensor technology with the potential to greatly improve long-term non-invasive, heart-health monitoring.
    • HIGH SPIN 105MM ARMAMENT OBR TECHNICAL PAPER

      Rotundo, Alfred; US Army - Army Futures Command; CCDC - Armament Center - Precision Munition Instrumentation Division (International Foundation for Telemetering, 2019-10)
      Developed an on-board-recorder (OBR) to capture both in-bore acceleration and in-flight canister expulsion forces for an artillery projectile. The instrumentation recorded on the OBR was fed into a model to simulate these forces. The OBR’s space claim was limited to the expulsion cavity of the artillery projectile. The OBR was equipped with an analog sensor suite that recorded battery, expulsion pressure, high-g in-bore axial accelerometer data, and radial spin data. Utilizing 8 channels of the ADC on the DSP, the sensors are recorded into both volatile SRAM and NOR Flash memory. The OBR matched both weight and center of gravity of the tactical artillery round. To accomplish this, multiple housing materials and potting materials were utilized. The OBR survived multiple shots. The OBR was instrumented successfully on 4 rounds, allowing an accurate model and simulation to be created to increase design reliability and minimize failures on future designs
    • TELEOPERATED ROBOTIC ARMS WITH OPEN AND CLOSED LOOP CONTROL SYSTEMS

      Kosbar, Kurt; Verbrugge, Eli; Dahlman, Brian; Missouri University of Science and Technology (International Foundation for Telemetering, 2019-10)
      This paper examines the usage of telemetry for the six degrees of freedom robotic arm designed to compete on a mars rover in the 2019 University Rover Challenge. The arm utilizes three microcontrollers to receive control commands and translates them directly to motor signals for the six brushed DC motors. The usage of the 32-bit microcontrollers facilitates inverse kinematics, an intuitive process that allows commands to be sent as 3D coordinates to the arm, ensuring fine control for arm manipulation. Telemetry is transmitted from the rover to a remote base station over a 900 MHz RF link, using two omnidirectional cloverleaf antennas. Communication between the embedded systems is achieved with the ethernet User Datagram Protocol standard. This ensures seamless transferal of commands from the driver’s joystick to the arm, and a stream of telemetry containing motor currents, positional values, and limit switch states - a necessity for the open and closed loop control systems.
    • TELEMETRY ON WILDCAT FORMULA RACING VEHICLE

      Marcellin, Michael; Tan, Nicolas; Univ Arizona, Wildcat Formula Racing (International Foundation for Telemetering, 2019-10)
      The Wildcat Formula Racing Team of the University of Arizona participates in an annual engineering design competition where students compete with small formula-style racing cars. One of the challenges we face is to provide justification of our design choices to the judges. To establish means of collecting data used as evidence and analysis, we use a mixture of automotive sensors and electronic sensors to be transmitted onto an external microcontroller, an Arduino. The data will then be stored locally and broadcasted from the vehicle to the pit with a transceiver module for post-race data analysis, as well as feedback for the team.
    • SOFTWARE CONVERSION OF LEGACY RECORDING FORMAT TO IRIG 106 CHAPTER 10 FILE

      Graham, Richard A., Jr.; Shepherd, Steven G.; US Navy, NSWC Corona (International Foundation for Telemetering, 2019-10)
      This paper examines how to convert files recorded on a legacy recorder to an IRIG 106 Chapter 10 file.
    • Adaptive OFDM for Aeronautical Channels

      Moazzami, Farzad; Dean, Richard; Zegeye, Wondimu K.; Alam, Tasmeer; Morgan State University, Dept Electrical and Computer Engineering (International Foundation for Telemetering, 2019-10)
      Previous work modeled the cruise phase of an aeronautical channel and showed how the channel varied as a function of height, distance, and speed. What was apparent from that analysis was that the ``cruise" channel was remarkable stable and varied slowly and predictably over time. The steady state channel reflected a 2-ray multipath model which exhibits deep nulls in the spectrum which affects serial tone modems significantly. Further the application of parallel tone modulation improves performance except for that portion of the band which was degraded by the null. This points to the use of Adaptive OFDM (AOFDM) structure wherein tones are only sent in portions of the band which are strong and not areas where the signal is weak. This work develops a method for capturing a profile of the Signal to Distortion Ratio (SDR) for each tone for each frame and over time. It also develops a method for converting the SDR per tone to estimate the optimum QAM modulation scheme for each tone for application in Link Dependent Adaptive Radio (LDAR).
    • Implementation and Benefits of Best Source Selection

      Gerstner, Grant; Normyle, Dennis; NAVAIR Atlantic Division (International Foundation for Telemetering, 2019-10)
      A comprehensive guide to implementing best source selection at a test range. This paper uses the history of the Atlantic Test Range's implementation as a guide to show the steps needed to implement Best Source Selection. It also discusses the advantages to best source selection at all levels of implementation.
    • Hybridization of wireless technologies for the aerospace instrumentation

      Percie du Sert, François-Gabriel; Zodiac Data Systems (International Foundation for Telemetering, 2019-10)
      Whatever the flight test or space launch vehicle, instrumentation presents strong intrusiveness due to cabling. The industry is resolutely looking for a transition toward wireless architectures for elimination of cabling while not compromising data integrity and network performances. The ideal wireless solution is a single technology that could encompass all the needs. But there is a wide variety of use cases and associated requirements: data throughput, synchronization accuracy, power consumption, robustness of the link, frequency regulation constraints. Today, no technology is able to cover all these needs. However, multiple technologies show specific characteristics that are optimized for some particular use cases. Hybridization of multiple wireless technologies in a complex system is the right solution to address specific applications with the optimal wireless instrumentation solution and no concession on performance.
    • RESILIENT PNT / TSPI ALTERNATIVE SOLUTIONS FOR TELEMETRY DURING GNSS OUTAGE TEST SCENARIOS

      Fischer, John; Perdue, Lisa; Orolia (International Foundation for Telemetering, 2019-10)
      GNSS is key to effective situational awareness, providing critical Positioning, Navigation and Timing (PNT) telemetry data for mobile military operations. Yet GPS/GNSS jamming and spoofing attacks are on the rise. The combination of low-cost hardware, open source software, and tutorials on YouTube have fostered the proliferation of these malicious acts. Beyond intentional disruption, other factors such as environmental conditions and conflicts with other electronic systems can result in unreliable or even unavailable GNSS data. The disruption of GNSS for increasing periods of time through jamming/spoofing must now be an essential test component in most test scenarios today. How can one still provide reliable Time-Space Position Information (TSPI) during periods of GNSS denial? Key mobile military operations that rely on continuous and trusted PNT telemetry data from GNSS include: SatCom on the Move (SOTM), Command, Control, Communications, Computer, Intelligence, Surveillance and Reconnaissance (C4ISR), Airborne Communications Relay, Synthetic Aperture Radar, and Combat Search and Rescue (CSAR). Techniques and technologies used in battlefield systems to provide alternative sources of PNT data during a GNSS outage, can also be used on the test range. This paper will identify technologies, best practices and strategies for GNSS jamming/spoofing detection and protection systems and testing protocols to maintain a state of PNT readiness.
    • Testing the Reliability and Flexibility of Digitizers adapting the RF/IF signals over IP applications using a testbed Platform.

      Gonzalez, Virgilio; Sandoval, Jose Carlos; Elahi, Mirza; Corral, Pabel; Yasuda, Susumu; Univ Texas, Dept Electrical and Computer Engineering; White Sands Missile Range, U.S. Army Test and Evaluation Command (International Foundation for Telemetering, 2019-10)
      Many disadvantages from physical limitations in RF Telemetry can now be eliminated using RF over IP Networks. Digitizers mitigate the problem of signal degradation that RF has due to physical restrictions and provide reliability and flexibility to the signal. The digitizers are also able to preserve both frequency and timing characteristics, and then accurately reconstructing the original Telemetry signals to enable processing, recording or retransmission at another location. The digitizers along with the software-defined radios forms a flexible testbed platform which enables us to simulate both communication systems to qualify and quantify their behavior, while studying the interference between systems. In addition, quantization of noise is a critical parameter to determine the bit error rate in the testbed. Digitizers can be configured at a certain bandwidth and additional gain, in order to make this layer almost a transparent transmission.
    • CO-EXISTENCE OF AERONAUTICAL MOBILE TELEMETRY AND LTE SYSTEMS IN THE S-BAND

      Shoudha, Shamman Noor; Saquib, Mohammad; Univ Texas, Dept Electrical Engineering (International Foundation for Telemetering, 2019-10)
      This paper analyzes the effect of Long-Term Evolution (LTE) uplink interference on the performance of Aeronautical Telemetry S-band users. A MATLAB simulation environment is used to analyze the interference effect using SOQPSK-TG and 64-QAM modulation schemes for telemetry and LTE transmitters, respectively. An ideal Surface Acoustic Wave (SAW) filter followed by a 2-by-2 symbol detector is used in the telemetry receiver. To ensure a target bit error rate (BER) of 10-5, depending on the LTE spectrum mask, the Carrier-to-Interference (C/I) ratio requirement is -15.4, -32.4 and -30 dB for data rates 1; 5 and 10 Mbits/s, respectively.
    • AN APPROACH FOR BER DETERMINATION USING LOGGED AERONAUTICAL TELEMETRY DATA

      Tamakuwala, Jimmy B.; Sonar, Souvik; Jena, Avijit; Integrated Test Range, DRDO Chandipur; Defense Research and Development Organization (International Foundation for Telemetering, 2019-10)
      BER is regarded as the link-performance metric in a digital communication system. It is a function of Eb/N0 and is dependent on the modulation scheme used. This relation is often used in prediction of ground telemetry systems performance for a mission configuration. However, there is no objective way of comparing the post flight results, as BER measurement in a flight test is not practically feasible for want of transmitting sufficient reference bit patterns. In this paper, an indirect way of computing BER and, in turn, link Eb/N0 is proposed for a PCM/FM link based on the frame synchronised data logged by the ground telemetry equipment. Using known quantities like bit rate and frame rate, a quantity defined as frame loss rate is computed. Applying the relations between frame loss probability, frame sync pattern and SFID information in the PCM format, an approach for bit error probability is demonstrated based on field data. By using a sliding window over a fixed length of data, BER for the entire flight duration can be determined as a function of flight time with the step size of the length of data window.
    • DUAL-CHANNEL RECEIVER PERFORMANCE USING BESTCHANNEL SELECTION: FIELD TEST RESULTS

      Uetrecht, Jim; Quasonix, Inc. (International Foundation for Telemetering, 2019-10)
      Best-Channel Selection (BCS) uses real-time data quality metrics (DQM) to select the best demodulated bits from Channel 1, Channel 2, and the Combiner of dual-channel receivers. Laboratory testing has demonstrated a substantial reduction in bit error rate (BER) relative to individual channels (including the Combiner) under some synthesized link conditions, with no degradation in BER under the remainder of tested link conditions. This paper extends those results to real-world flight tests.