• Interannual Herbaceous Biomass Response to Increasing Honey Mesquite Cover on Two Soils

      Teague, W. Richard; Ansley, R. Jim; Pinchak, William E.; Dowhower, Steven L.; Gerrard, Shannon A.; Waggoner, J. Alan (Society for Range Management, 2008-09-01)
      This study quantified herbaceous biomass responses to increases in honey mesquite (Prosopis glandulosa Torr.) cover on two soils from 1995 to 2001 in north central Texas. Vegetation was sampled randomly with levels of mesquite ranging from 0% to 100%. With no mesquite covering the silt loam soils of bottomland sites, peak herbaceous biomass averaged (6SE) X 300 +/- 210 kg ha-1 vs. –560 +/- 190 kg ha-1 on clay loam soils of upland sites (P = 0.001). A linear decline of 14 +/- 2.5 kg ha-1 in herbaceous biomass occurred for each percent increase in mesquite cover (P = 0.001). The slope of this decline was similar between soils (P=0.135). Herbaceous biomass with increasing mesquite cover varied between years (P=0.001) as did the slope of decline (P=0.001). Warm-season herbaceous biomass decreased linearly with increasing mesquite cover averaging a 73 +/- 15% reduction at 100% mesquite cover (P = 0.001) compared to 0% mesquite cover. Cool-season herbaceous biomass was similar between soils with no mesquite, 1 070 +/- 144 kg ha-1 for silt loam vs. 930 +/- 140 kg ha-1 for clay loam soils, but averaged 340 +/- 174 kg ha-1 more on silt loam than on clay loam soils at 100% mesquite cover (P = 0.004). Multiple regression analysis indicated that each centimeter of precipitation received from the previous October through the current September produced herbaceous biomass of 51 kg ha-1 on silt loam and 41 kg ha-1 on clay loam soils. Herbaceous biomass decreased proportionally with increasing mesquite cover up to 29 kg ha-1 at 100% mesquite cover for each centimeter of precipitation received from January through September. Increasing mesquite cover reduces livestock forage productivity and intensifies drought effects by increasing annual herbaceous biomass variability. From a forage production perspective there is little advantage to having mesquite present. 
    • Jaguar and Puma Predation on Cattle Calves in Northeastern Sonora, Mexico

      Rosas-Rosas, Octavio C.; Bender, Louis C.; Valdez, Raul (Society for Range Management, 2008-09-01)
      Predation by jaguars (Panthera onca) and pumas (Puma concolor) is often a source of conflict with cattle ranching in northeastern Sonora, Mexico. Because jaguars are endangered in Mexico, such conflicts have biological, social, and economic consequences. We documented the extent of predation by jaguars and pumas on cattle in 1999-2004 in northeastern Sonora, where the northernmost breeding population of jaguars exists in North America. Jaguars and pumas killed only calves , 12 mo old, and calves constituted 58% of prey biomass consumed by jaguars and 9% by pumas. Annual cause-specific mortality rates of confirmed jaguar predation (< 0.018), confirmed and suspected jaguar predation (< 0.018), and all confirmed and suspected large felid predation (< 0.018) were low and cattle calf survival was high (0.89-0.98 annually). If calves reported as missing but for which no evidence of mortality could be found were classed as large felid predation, annual cause-specific rates increased to 0.006-0.038. Collectively, confirmed jaguar and puma predation accounted for < 14% (57/408) of total cattle losses, with jaguars responsible for 14% of all calf losses; this could increase to a maximum of 36% (146/408) if missing calves were included in the totals. While jaguar and puma predation may have an impact on some small cattle operations, it is generally minor compared to losses from other causes in northeastern Sonora. Moreover, 91% of all confirmed calf kills were associated with three individual jaguars in our study. Targeting problem cats rather than broad-scale predator control may therefore be a viable alternative to address chronic predation problems. Because most (83%) instances of jaguar predation occurred during the dry season along thick riparian habitats, modified cattle husbandry operations, such as establishment of permanent water sources in uplands and away from dense vegetative cover, could ameliorate many cases of predation by jaguars on cattle. 
    • Long-Term Response Patterns of Tallgrass Prairie to Frequent Summer Burning

      Towne, E. Gene; Kemp, Ken E. (Society for Range Management, 2008-09-01)
      Knowledge of how tallgrass prairie vegetation responds to fire in the late growing season is relatively sparse and is based upon studies that are either spatially or temporally limited. To gain a more robust perspective of vegetation response to summer burning and to determine if repeated summer fire can drive vegetational changes in native tallgrass prairie, we evaluated species cover and richness over a 14-yr period on different topographic positions from ungrazed watersheds that were burned biennially in the growing season. We found that annual forbs were the primary beneficiaries of summer burning, but their fluctuations varied inconsistently among years. Concomitantly, species richness and diversity increased significantly with summer burning but remained stable through time with annual spring burning. After 14 yr, species richness was 28% higher in prairie that was burned in the summer than in prairie burned in the spring. Canopy cover of big bluestem (Andropogon gerardii Vitman) and Indiangrass (Sorghastrum nutans [L.] Nash) increased significantly over time with both summer and spring burning, whereas heath aster (Symphyotrichum ericoides [L.] Nesom), aromatic aster (Symphyotrichum oblongifolium [Nutt.] Nesom), and sedges (Carex spp.) increased in response to only summer burning. Kentucky bluegrass (Poa pratensis L.) cover declined in both spring-burned and summer-burned watersheds. Repeated burning in either spring or summer did not reduce the cover or frequency of any woody species. Most perennial species were neutral in their reaction to summer fire, but a few species responded with large and inconsistent temporal fluctuations that overwhelmed any clear patterns of change. Although summer burning did not preferentially encourage spring-flowering forbs or suppress dominance of the warm-season grasses, it is a potentially useful tool to increase community heterogeneity in ungrazed prairie. 
    • Microchannels Affect Runoff and Sediment Yield From a Shortgrass Prairie

      Koler, Selina A.; Frasier, G. W.; Trlica, M. J.; Reeder, J. D. (Society for Range Management, 2008-09-01)
      Runoff and sediment yield from rangelands are extremely important variables that affect productivity, but are difficult to quantify. Studies have been conducted to assess erosion on rangelands, but very little has been done to determine if microchannels (rills) affect runoff and sediment yield. Rainfall simulations were used to quantify the effects of microchannels on runoff and sediment loss on a shortgrass prairie with two types of range conditions (good and fair). Natural flow paths within plots in the two range conditions were defined and then enhanced with an ellipse-shaped hoe to create microchannels. Soil from plots was removed at two rates (11.2 t ha-1 and 22.4 t ha-1) to create three soil surface configurations. Soil was removed by vacuuming to create either a single microchannel or multiple microchannels down the plot, and the third treatment was uniform soil removal over the entire plot (sheet). Results showed significantly greater total runoff from both single and multiple microchannel treatments compared with sheet soil removal. The microchannels resulted in significantly less sediment yield per unit of runoff compared with the sheet soil removal treatment. Both runoff and sediment yield were affected by range condition. Plots that were in fair range condition, dominated by buffalo grass (Buchloe dactyloides [Nutt.] Engleman), had a greater amount of total runoff (double) but less sediment yield (75%) than plots in good range condition that were dominated by blue grama (Bouteloua gracilis [H.B.K.] Lag. ex Stued.). The dense buffalo grass sod protected the soil surface from erosion, but water flowed freely across the sod. This study has provided a greater understanding of how microchannels affect runoff and sediment yield under different rangeland conditions, and has illustrated how plant species composition and soil surface features relate to several hydrologic functions. 
    • Short-Term Mesquite Pod Consumption by Goats Does Not Induce Toxicity

      Cook, Robert W.; Scott, Cody B.; Hartmann, F. Steve (Society for Range Management, 2008-09-01)
      Goats, unlike cattle, disperse few viable mesquite (Prosopis glandulosa Torr.) seeds in feces. However, there is some evidence that goats may suffer from toxicosis from overingestion of mesquite pods. We assessed the likelihood that short-term ingestion of mesquite pods would induce toxicosis in goats. Twenty-four goats were randomly allocated to one of four treatments with treatments fed different concentrations (0%, 30%, 60%, or 90% of the diet) of whole mesquite pods fed with alfalfa pellets. The mixture of mesquite pods and alfalfa pellets was fed for 12 d to 14 d. Because there were only 12 pens available for the study, two trials were used so that all 24 goats could be housed in individual pens. Intake, serum metabolite levels, and fecal output were measured to assess physiological status. In Trial 1, intake and fecal output decreased on days 12 through 14 for goats consuming a diet of 90% mesquite pods. In the second trial, intake and fecal output were similar across days of feeding within each treatment, but the trial only lasted 12 d. Serum metabolite levels remained within normal levels irrespective of the amount of mesquite pods in the diet in both trials. Goats appear to be able to consume mesquite pods on a short-term basis without experiencing toxicosis. 
    • Temporal Variation in Diet and Nutrition of Preincubating Greater Sage-Grouse

      Gregg, Michael A.; Barnett, Jenny K.; Crawford, John A. (Society for Range Management, 2008-09-01)
      Greater sage-grouse (Centrocercus urophasianus) habitat management involves vegetation manipulations to increase or decrease specific habitat components. For sage-grouse habitat management to be most effective, an understanding of the functional response of sage-grouse to changes in resource availability is critical. We investigated temporal variation in diet composition and nutrient content (crude protein, calcium, and phosphorus) of foods consumed by preincubating female sage- grouse relative to food supply and age of hen. We collected 86 preincubating female greater sage-grouse at foraging areas during early (18-31 March) and late (1-12 April) preincubation periods during 2002-2003. Females consumed 22 food types including low sagebrush (Artemisia arbuscula Nutt.), big sagebrush (Artemisia tridentata Nutt.), 15 forb species, 2 insect taxa, sagebrush galls, moss, and a trace amount of unidentified grasses. Low sagebrush was the most common food item, but forbs were found in 89% of the crops and composed 30.1% aggregate dry mass (ADM) of the diet. ADM and species composition of female diets were highly variable between collection periods and years, and coincided with temporal variation in forb availability. Adult females consumed more forbs and less low sagebrush compared to yearling females. Because of higher levels of crude protein, calcium, and phosphorus, forbs were important diet components in comparison with low sagebrush, which had the lowest nutrient content of all foods consumed. Our results indicate that increased forb abundance in areas used by female sage-grouse prior to nesting would increase their forb consumption and nutritional status for reproduction. We recommend that managers should emphasize delineation of habitats used by preincubating sage-grouse and evaluate the need for enhancing forb abundance and diversity.