• Prickly Pear Cactus Responses to Summer and Winter Fires

      Ansley, R. James; Castellano, Michael J. (Society for Range Management, 2007-05-01)
      Prescribed fire is used to reduce size and density of prickly pear cactus (Opuntia spp.) in many rangeland ecosystems. However, effects of dormant season fires (i.e., winter fires) are inconsistent. Thus, there is increasing interest in use of growing season (summer) fires. Our objective was to evaluate effects of fire season and fire intensity on mortality and individual plant (i.e., ‘‘motte’’) structure (area per motte, cladodes per motte, motte height) of brownspine prickly pear (O. phaeacantha Engelm.). The study had 4 treatments: no fire, low-intensity winter fire, high-intensity winter fire, and summer fire. Three sizes of prickly pear mottes were evaluated: small (0-20 cladodes per motte), medium (21-100), and large (101-500). At 3 years postfire, prickly pear mortality in the summer fire treatment was 100% in small mottes, 90% in medium mottes, and 80% in large mottes. Motte mortality increased in this treatment over time, especially in large mottes. Mortality from high-intensity winter fires was 29% and 19% in small and medium mottes, respectively, but no large mottes were killed. Motte mortality was < 10% in low-intensity winter fire and no-fire treatments. Summer fires reduced all motte structural variables to 0 in small mottes and nearly 0 in other motte size classes. High-intensity winter fires reduced some structural variables of medium and large mottes, but had no long-term negative effects on area per motte or cladodes per motte in surviving small mottes. Low-intensity winter fires had no long-term negative effects on motte structure in any size class. Rapid growth of mottes, and especially small mottes, in the no-fire treatment suggested that resistance to winter fires can occur rapidly.