• Bowen ratio versus canopy chamber CO2 fluxes on sagebrush rangeland

      Johnson, D. A.; Saliendra, N. Z.; Walker, J. W.; Hendrickson, J. R. (Society for Range Management, 2003-09-01)
      Because of their expansiveness, sagebrush (Artemisia spp.)-steppe rangelands could contribute significantly to the global carbon budget. However, it is important to determine if there are differences between methods for determining CO2 fluxes on these rangelands. The objective of this study was to compare the Bowen ratio-energy balance and canopy chamber techniques for measuring CO2 fluxes in a sagebrush-steppe ecosystem. A Bowen ratio-energy balance system was installed at a sagebrush-steppe site near Dubois, Ida., U.S.A to continuously measure the vertical gradients of air temperature, water vapor, and CO2 concentration in conjunction with associated micrometeorological characteristics. The canopy chamber technique, which employed a 1-m2 (1,020 liter) clear plexiglass/plastic film chamber in combination with a portable gas exchange system, was used periodically during May through August across 4 years (1996-1999) to obtain instantaneous measurements of CO2 fluxes across 3 replicate blocks during a 2-min. measurement period. For the same measurement dates and times across the 4 years of study, CO2 fluxes ranged from -0.22 to 0.55 mg m-2 sec-1 for the Bowen ratio-energy balance technique and from -0.18 to 0.48 mg m-2 sec-1 for the canopy chamber technique. Estimates of CO2 fluxes by the 2 techniques were not statistically different (P > 0.05) for the early (May) and mid-season (June to mid-July) portions of the growing season; however, fluxes measured by the 2 techniques were significantly different (P 0.05) for the late-season period (late-July to late-August). Despite this difference during the hot-dry, late-season period, flux estimates from the 2 techniques were significantly and positively correlated during the early (r2 = 0.71), mid- (r2 = 0.88), and late- (r2 = 0.72) season periods. Thus, both techniques showed similar patterns of CO2 fluxes at our sagebrush-steppe study site across 4 years of study, although caution should be used when the canopy chamber technique is used during hot, dry conditions.
    • Characterization of diversity among 3 squirreltail taxa

      Jones, T. A.; Nielson, D. C.; Arredondo, J. T.; Redinbaugh, M. G. (Society for Range Management, 2003-09-01)
      Squirreltail (Elymus elymoides, E. multisetus) is a complex of 5 taxa whose systematic interrelationships are uncertain. Our objectives were to determine whether the 3 taxa studied here, Elymus elymoides ssp. elymoides, E. elymoides ssp. brevifolius, and E. multisetus, can be distinguished by several ecological and physiological traits and whether geographical origin is correlated with these traits across accessions within taxa. A multivariate principal component analysis of materials collected in the 10 contiguous western states successfully distinguished taxa, but no pair of the 3 taxa appeared to be more ecologically similar than any other pair. Elymus elymoides ssp. elymoides, which prevails in the semi-arid cold desert, was shortest and exhibited the lowest total plant dry-matter, earliest phenology, and lowest seed mass. Elymus elymoides ssp. brevifolius, which prevails in the Rocky Mountains, exhibited slowest emergence, highest specific root length, lowest nitrate reductase activity, and lowest root-to-shoot ratio. Elymus multisetus, which is most common in areas with relatively warm springs, exhibited fastest emergence (particularly from deep seeding), greatest root length, and greatest root-to-shoot ratio. Elymus elymoides ssp. brevifolius accessions clustered into 3 groups: late-maturing high-seed mass accessions originating in Colorado, New Mexico, and Arizona (Group A), early-maturing low-seed mass accessions originating in Colorado and Utah (Group B), and intermediate-maturing low-seed mass accessions originating in the Snake River Plain of southern Idaho (Group C). The ecologically distinct subspecies and groups within ssp. brevifolius are indicative of the highly ecotypic nature of the squirreltails, suggesting that restoration practitioners should match site with genetically and ecologically appropriate plant material for these species.