• Sediment movement and filtration in a riparian meadow following cattle use

      Mceldowney, R. R.; Flenniken, M.; Frasier, G. W.; Trlica, M. J.; Leininger, W. C. (Society for Range Management, 2002-07-01)
      Improper livestock grazing practices in western U.S. riparian areas may reduce the nutrient and pollutant removal function of riparian communities, resulting in degradation of surface water quality. Short duration-high intensity cattle use in 3 x 10 m plots was evaluated in a montane riparian meadow in northern Colorado to quantify livestock effects on sediment movement and filtration under simulated rainfall (approximately equal to 100 mm hour(-1)) plus overland flow (approximately equal to 25 mm hour(-1)) conditions. Four treatments: 1) control, 2) mowed to 10 cm stubble height, 3) trampled by cattle, and 4) cattle grazed plus trampled (grazed) were evaluated. Sixty kg of sediment was introduced to overland flow in each plot. Sediment movement was evaluated using sediment traps positioned in microchannels and on vegetation islands at 5 distances downslope from the upper end of the plots and by sediment front advancement. Most sediment deposition occurred within the first meter downslope from application. About 90% of the applied sediment was filtered from runoff within 10 m in the control and mowed treatments, while approximately 84 and 77% of the applied sediment was trapped in the trampled and grazed treatment plots, respectively. The primary variables that influenced sediment filtration were stem density and surface random roughness. Stem density was the most influential variable that affected sediment filtration. Cattle grazing reduced the stem density by 40%. Monitoring of stem density should aid land managers in regulating cattle use of riparian communities and facilitate the protection of surface water quality from sediment in overland flow.
    • Short-term monitoring of rangeland forage conditions with AVHRR imagery

      Thoma, D. P.; Bailey, D. W.; Long, D. S.; Nielsen, G. A.; Henry, M. P.; Breneman, M. C.; Montagne, C. (Society for Range Management, 2002-07-01)
      A study was conducted to determine the potential of using Advanced Very High Resolution Radiometer (AVHRR) imagery to monitor short-term changes in rangeland forage conditions on a regional scale. Forage biomass and nitrogen concentration were estimated at 6 study sites throughout a typical grazing season (April to October). Study sites were located in northern and southern Montana in areas classified as foothills grassland and shortgrass prairie. Normalized Difference Vegetation Index (NDVI) values from AVHRR imagery (1 km pixels) were used to predict live biomass, dead standing biomass, total biomass, nitrogen (N) concentration and standing N. Values of the NDVI were correlated (r < 0.4, P < 0.01) to live, dead, and total biomass estimates and standing N, but were not correlated to N concentration (r = 0.04, P = 0.8). Relationships between NDVI and vegetative attributes were similar (P > 0.05) for all 6 study sites, which indicates that NDVI could be used to predict forage abundance at multiple locations and at variable dates. Using simple linear regression, NDVI accounted for 63% of the variation in live and total biomass, 18% of the variation in dead biomass, 66% of the variation in standing N, but < 1% of the variation in N concentration. The NDVI obtained from AVHRR imagery was a good predictor of forage abundance as measured by live, dead and total biomass as well as standing N, but it was not related to forage quality as measured by N or crude protein concentration. On a regional basis, land managers could use AVHRR-NDVI values to identify areas with high or low levels of forage abundance that may result from factors such as drought, variable precipitation patterns, or uneven grazing.
    • Shrub control and streamflow on rangelands: A process based viewpoint

      Wilcox, B. P. (Society for Range Management, 2002-07-01)
      In this paper, the linkage between streamflow and shrub cover on rangelands is examined, with a focus on the extensive Texas rangelands dominated by mesquite and juniper. The conclusions drawn are consistent with results from field studies and with our understanding of runoff processes from rangelands. Whether and how shrub control will affect streamflow depends on shrub characteristics, precipitation, soils, and geology. Precipitation is perhaps the most fundamental of these factors: there is little if any real potential for increasing streamflow where annual precipitation is below about 500 mm. For areas in which precipitation is sufficient, a crucial indicator that there is potential for increasing streamflow through shrub control is the presence of springs or groundwater flow to streams. These conditions often occur at locations where soils are shallow and underlain by fractured parent material. Under such conditions, reducing shrub cover may increase streamflows because water that would otherwise be lost through interception by the canopy instead moves into the soil and quickly travels beyond the root zone. If, on the other hand, there is no obvious subsurface connection between the hillslope and the stream channel and when runoff occurs it occurs as overland flow, shrub control will have little if any influence on streamflow. In assessing the potential for shrub control to increase streamflow, the runoff generation process should be explicitly identified. An improved understanding of the linkages between shrubs and streamflow on rangelands will require additional research on (1) hillslope hydrologic processes and how these are altered by shrub cover (2) groundwater-surface water interactions and (3) hydrologic scale relationships from the patch to the hillslope to the landscape levels.