• Complementary grazing of native pasture and Old World bluestem

      Gillen, R. L.; Berg, W. A. (Society for Range Management, 2001-07-01)
      Native pasture and Old World bluestems (Bothriochloa spp.) have contrasting herbage production characteristics that suggest potential for incorporation into a complementary forage system. We compared 2 yearling beef production systems consisting of either native pasture (Native) or Old World bluestem combined with native pasture (Old World bluestem-Native) over 5 years. Crossbred steers (initial weight 257 kg) grazed only native pasture in the Native system, but alternated between Old World bluestem and native pastures in the Old World bluestem-Native system. Production system had no effect on the frequency of any plant species in the native pastures (P > 0.16) even though stocking rate in the growing season was increased 31% in the Old World bluestem-Native system. Peak standing crop of Old World bluestem averaged 4640 kg ha(-1) but did not differ between the cultivars 'WW-Iron Master' and 'WW-Spar' (P = 0.16). Individual steer gain was higher in the Native system during the Winter (P < 0.01) and Early Native (P = 0.03) management periods, but was greater in the Old World bluestem-Native system when steers were grazing Old World bluestem in June and July (P < 0.001). Over the entire season, steers in the Native system gained 13.5 kg head(-1) more than steers in the Old World bluestem-Native system. Total livestock production was greater in the Old World bluestem-Native system (77 versus 47 kg ha(-1), P < 0.01). Relative economic returns between the 2 systems were dependent on the marginal value of livestock gain and the relative costs of production for the 2 types of pasture. With average costs for native pasture of 17 ha(-1) and for Old World bluestem pasture of 62.10 ha(-1), the Native system was often more profitable, even though livestock production per ha was much higher with the Old World bluestem-Native system. Lower costs for native pasture and high values of livestock gain favored the Native system.
    • Dietary structural types of polygastric herbivores at different environments and seasons

      Pelliza, A.; Willems, P.; Manacorda, M. (Society for Range Management, 2001-07-01)
      A classification of dietary structural types that represents different arrangements of forage classes is proposed. It may be especially useful for interpreting and comparing herbivore diets from different environments. As an example, a data set with the botanical composition of 55 pooled fecal samples determined by microhistological analysis was analyzed. These samples came from 4 species of range herbivores (cattle, sheep, goat, and guanaco -Lama guanicoe-), from 9 different environments of Northern Patagonia (Argentina) during 3 seasons. Based on plant characteristics related with the capacity of the animals to eat and digest each plant and with the occasional or permanent presence of them in the vegetation, the information was grouped into 5 forage classes: woody plants, perennial grasses, annual grasses, grasslikes, and forbs. A principal component analysis of the grouped data was conducted. The graphic representations evidenced the gradual changes in the structure of the data. Later, working over the subspace defined by the 3 first principal component axes, a hierarchical classification was performed that resulted in 9 dietary structural types. These types represented variation that resulted from the interaction of pasture differences, species of herbivore and season. This concept is an abstraction developed from the experience, to extend its utility beyond the particular cases.
    • Restoring tallgrass prairie species mixtures on leafy spurge-infested rangeland

      Masters, R. A.; Beran, D. D.; Gaussoin, R. E. (Society for Range Management, 2001-07-01)
      Leafy spurge (Euphorbia esula L.) reduces northern Great Plains rangeland carrying capacity. Treatment strategies were evaluated that suppressed leafy spurge and facilitated establishment of mixtures of native grasses and legumes on range sites near Mason City and Tilden, Nebr. Glyphosate at 1,600 g a.i. (active ingredient) ha(-1) was applied with or without imazapic at 140 or 210 g a.i. ha(-1) in October 1995. In April 1996, standing crop was burned or mowed. Mixtures of native grasses [big bluestem (Andropogon gerardii Vitman), indiangrass (Sorghastrum nutans (L.) Nash), switchgrass (Panicum virgatum L.), little bluestem (Schizachyrium scoparium (Michx.) Nash), and sideoats grama (Bouteloua curtiplendula (Michx.) Torr.)] were then planted with or without native legumes [leadplant (Amorpha canescens (Nutt.) Pursh), Illinois bundleflower (Desmanthus illinoensis (Michx.) MacM.), and purple prairieclover (Petalostemum purpureum (Vent.) Rybd.)] at 440 pls m(-2) into a non-tilled seedbed. Imazapic was applied at 70 g a.i. ha(-1) in June 1996 to half the plots that had been treated with imazapic in October 1995. Frequency, dry matter yield, and leafy spurge density were measured 14 to 16 months after planting. Leafy spurge density and yield were least, and frequencies and yields of the planted grasses usually were greatest where imazapic had been applied with glyphosate in October 1995. Purple prairieclover was the only planted legume to persist 14 months after planting, and yields were greatest where imazapic was applied with glyphosate. Imazapic applied in June 1996 usually did not improve planted species yields or leafy spurge control. Total vegetation yields were greater where imazapic was applied with glyphosate at both sites and where native species were seeded at Mason City. Vegetation suppression with fall-applied herbicides and removal of standing crop enabled successful establishment of desirable species, increased forage yields, and suppressed leafy spurge.
    • Statistical analyses of fluorometry data from chloroform filtrate of lamb feces

      Mukherjee, A.; Anderson, D. M.; Daniel, D. L.; Murray, L. W.; Tisone, G.; Fredrickson, E. L.; Estell, R. E.; Rayson, G. D.; Havstad, K. M. (Society for Range Management, 2001-07-01)
      Accurately identifying the botanical composition of free-ranging animal diets remains a challenge. Currently accepted procedures are time consuming, many requiring painstaking sample preparation while none produce data useful for real-time management. Automated procedures focusing on detection of chemical and/or physical plant properties using specific molecules called fluorophores offers possibilities for determining the species composition of herbivore diets. This study was designed to evaluate fluorometry techniques in herbivore diet determinations using fecal samples obtained from 13 lambs fed a basal diet of tobosa hay (Pleuraphis mutica Buckley), and containing 4 different levels (0, 10, 20, and 30%) of tarbush (Flourensia cernua D C.) leaf material. Chloroform (CHCl3) filtrate obtained from the lamb's feces was exposed to UV light from a xenon arc lamp. This caused fluorophore molecules in the filtrate to have their outer shell electrons move to a higher energy state as a result of UV light excitation. After excitation by UV light at 310, 320, 330, 340, 350, and 355 nm, the fluorophores returned to their ground state giving off light (fluorescence). This fluorescence intensity (counts) varied and when captured using appropriate electronics, produced 1,024 pairs of light intensities (counts) and fluorescent wavelengths between 175 and 818 nm in 0.63 nm increments. Previous research indicated differences among diets could be determined using distinct peaks in the red and blue regions of the visible light spectrum and a univariate (1 variable at a time) analysis. This research demonstrates the entire fluorescence data set can be used to determine differences among diets using multivariate statistics. Sequences of 5 increasingly complex statistical techniques were used to distinguish among diets: 2-dimensional plots, polynomial regression models, confidence interval plots, discriminant analysis, and 3-dimensional plots. Two-dimensional plots indicated 2 spectral fluorescence peaks, 1 in the blue-green (420-600 nm) and 1 in the red (640-720 nm) region of the visible spectrum. Because of the asymmetrical nature of these peaks, fifth-order polynomials were developed to differentiate among the 4 diets. Statistical reliability was high when discriminating between diets containing no tarbush leaf and the diets containing 30% tarbush leaf; however, it was not possible to statistically separate diets containing intermediate (10 and 20%) amounts of tarbush leaf material from each other or from the 2 extremes (0 and 30% tarbush leaf). These results suggest spectral signatures arising from fluorometry data may be useful for differentiating among botanical composition diets that differ in plant form, but that a multivariate approach may require large sample sizes.
    • Structural anti-quality characteristics of range and pasture plants

      Laca, E. A.; Shipley, L. A.; Reid, E. D. (Society for Range Management, 2001-07-01)
      Structural anti-quality characteristics are physical plant traits that reduce the performance and productivity of herbivores and quality of their agricultural products. Most structural anti-quality characteristics of plants affect the rate at which herbivores gather and ingest forages, reducing the total amount of food obtained or increasing the time necessary to obtain food. Structural anti-quality can substantially influence searching time (e.g., plant crypticity, distribution), cropping time (e.g., plant fibrousness, tensile and shear strength), and bite size (e.g., plant canopy structure, spinescence). Plant structural characteristics can also reduce digestion (e.g., silica), cause injury (e.g., spines, awns, burrs, calluses), or reduce the quality of animal products, such as wool (e.g., propagules). The effects of structural antiquality characteristics depend on the morphology of the herbivore, especially its size, the morphology of the focal plant, and their context within the habitat. Integrated grazing management plans should consider options to reduce the negative effects of structural anti-quality. Carefully selecting appropriate livestock species with previous experience, and the appropriate season of grazing can minimize anti-quality on rangelands. Because structural anti-quality may actually promote sustainability of grazing systems by preventing severe defoliation, or by providing refuges for highly desirable forages, it may not be desirable to completely counteract their effects.