• Practical measures for reducing risk of alfalfa bloat in cattle

      Majak, W.; Hall, J. W.; McAllister, T. A. (Society for Range Management, 2001-07-01)
      Frothy bloat in cattle is a serious problem and is difficult to manage under field conditions as it progresses rapidly from early signs of distension to acute distress. Scientists at Agriculture and Agri-Food Canada centres in Western Canada are committed to the development of bloat-free alfalfa grazing systems, which may require feed additives or supplements. As well, a new cultivar of alfalfa (AC Grazeland), selected for a low initial rate of digestion, will soon be available. In grazing trials the cultivar reduced the incidence of bloat by an average of 56% compared with the control cultivar (Beaver). Commonly accepted mineral mixes for the prevention of bloat were tested and found ineffective but we have confirmed that poloxalene (Bloatguard®) is 100% effective if it is given intraruminally at the prescribed dose. However, under practical conditions, poloxalene can only be offered free choice and protection from bloat cannot be guaranteed. We have also shown that the water soluble polymer, Blocare® 4511, when used in the water supply is 100% effective in bloat prevention. This product is not yet registered in North America. Other strategies for bloat prevention will be discussed, including the selection of growth stages and grazing schedules, and the reduction of risk by wilting alfalfa or combining it with tannin-containing forages.
    • Restoring tallgrass prairie species mixtures on leafy spurge-infested rangeland

      Masters, R. A.; Beran, D. D.; Gaussoin, R. E. (Society for Range Management, 2001-07-01)
      Leafy spurge (Euphorbia esula L.) reduces northern Great Plains rangeland carrying capacity. Treatment strategies were evaluated that suppressed leafy spurge and facilitated establishment of mixtures of native grasses and legumes on range sites near Mason City and Tilden, Nebr. Glyphosate at 1,600 g a.i. (active ingredient) ha(-1) was applied with or without imazapic at 140 or 210 g a.i. ha(-1) in October 1995. In April 1996, standing crop was burned or mowed. Mixtures of native grasses [big bluestem (Andropogon gerardii Vitman), indiangrass (Sorghastrum nutans (L.) Nash), switchgrass (Panicum virgatum L.), little bluestem (Schizachyrium scoparium (Michx.) Nash), and sideoats grama (Bouteloua curtiplendula (Michx.) Torr.)] were then planted with or without native legumes [leadplant (Amorpha canescens (Nutt.) Pursh), Illinois bundleflower (Desmanthus illinoensis (Michx.) MacM.), and purple prairieclover (Petalostemum purpureum (Vent.) Rybd.)] at 440 pls m(-2) into a non-tilled seedbed. Imazapic was applied at 70 g a.i. ha(-1) in June 1996 to half the plots that had been treated with imazapic in October 1995. Frequency, dry matter yield, and leafy spurge density were measured 14 to 16 months after planting. Leafy spurge density and yield were least, and frequencies and yields of the planted grasses usually were greatest where imazapic had been applied with glyphosate in October 1995. Purple prairieclover was the only planted legume to persist 14 months after planting, and yields were greatest where imazapic was applied with glyphosate. Imazapic applied in June 1996 usually did not improve planted species yields or leafy spurge control. Total vegetation yields were greater where imazapic was applied with glyphosate at both sites and where native species were seeded at Mason City. Vegetation suppression with fall-applied herbicides and removal of standing crop enabled successful establishment of desirable species, increased forage yields, and suppressed leafy spurge.