• Low density of prickly acacia under sheep grazing in Queensland

      Tiver, F.; Nicholas, M.; Kriticos, D.; Brown, J. R. (Society for Range Management, 2001-07-01)
      Populations of an introduced woody weed, prickly acacia (Acacia nilotica (L.) Delile ssp. indica (Benth.) Brenan syn. Acacia arabica (Lam.) Willd. ssp. indica Benth.), were surveyed at 4 sites in central Queensland. There is a significantly lower frequency of plants of 3 m in height within populations which have been grazed by sheep, indicating that browsing by sheep reduces regeneration. There were higher losses of seedlings at a sheep-grazed site than at cattle-grazed sites. These results support previous assertions that prickly acacia is regenerating more successfully on cattle properties, because cattle both disperse seeds and are less effective herbivores. In regions of low annual rainfall, prickly acacia is capable of forming dense stands (up to 2,700 shrubs ha(-1)) in lowland landscape types. Stands are less dense in upland landscapes (maximum of 718 shrubs ha(-1)). Of most concern is that in regions of high annual rainfall prickly acacia can form extremely dense thickets across most landscape types (up to 3,400 shrubs ha(-1)). We suggest that prickly acacia is most likely to become a management problem on cattle properties, and an extreme problem in high annual rainfall areas. The inclusion of sheep in livestock rotations may be an effective control measure in the Mitchell Grasslands, but this may not always be possible. A high priority is to prevent prickly acacia from expanding its range into equivalent high rainfall areas within Queensland, and also in the Northern Territory, northern New South Wales, and Western Australia. This could be achieved by quarantining livestock which have come from infested properties until seeds have passed through the digestive tract, after about 6 days. Management strategies at the property level should aim to prevent further spread of prickly acacia by controlling cattle movements between paddocks during periods when cattle are ingesting pods and seeds.
    • Restoring tallgrass prairie species mixtures on leafy spurge-infested rangeland

      Masters, R. A.; Beran, D. D.; Gaussoin, R. E. (Society for Range Management, 2001-07-01)
      Leafy spurge (Euphorbia esula L.) reduces northern Great Plains rangeland carrying capacity. Treatment strategies were evaluated that suppressed leafy spurge and facilitated establishment of mixtures of native grasses and legumes on range sites near Mason City and Tilden, Nebr. Glyphosate at 1,600 g a.i. (active ingredient) ha(-1) was applied with or without imazapic at 140 or 210 g a.i. ha(-1) in October 1995. In April 1996, standing crop was burned or mowed. Mixtures of native grasses [big bluestem (Andropogon gerardii Vitman), indiangrass (Sorghastrum nutans (L.) Nash), switchgrass (Panicum virgatum L.), little bluestem (Schizachyrium scoparium (Michx.) Nash), and sideoats grama (Bouteloua curtiplendula (Michx.) Torr.)] were then planted with or without native legumes [leadplant (Amorpha canescens (Nutt.) Pursh), Illinois bundleflower (Desmanthus illinoensis (Michx.) MacM.), and purple prairieclover (Petalostemum purpureum (Vent.) Rybd.)] at 440 pls m(-2) into a non-tilled seedbed. Imazapic was applied at 70 g a.i. ha(-1) in June 1996 to half the plots that had been treated with imazapic in October 1995. Frequency, dry matter yield, and leafy spurge density were measured 14 to 16 months after planting. Leafy spurge density and yield were least, and frequencies and yields of the planted grasses usually were greatest where imazapic had been applied with glyphosate in October 1995. Purple prairieclover was the only planted legume to persist 14 months after planting, and yields were greatest where imazapic was applied with glyphosate. Imazapic applied in June 1996 usually did not improve planted species yields or leafy spurge control. Total vegetation yields were greater where imazapic was applied with glyphosate at both sites and where native species were seeded at Mason City. Vegetation suppression with fall-applied herbicides and removal of standing crop enabled successful establishment of desirable species, increased forage yields, and suppressed leafy spurge.