• Animal health problems caused by silicon and other mineral imbalances

      Mayland, H. F.; Shewmaker, G. E. (Society for Range Management, 2001-07-01)
      Plant growth depends upon C, H, O, and at least 13 mineral elements. Six of these (N, K, Ca, Mg, P, and S) macro-elements normally occur in plants at concentrations greater than 1,000 mg kg(-1) level. The remaining micro-elements (B, Cl, Cu, Fe, Mn, Mo, and Zn) normally occur in plants at concentrations less than 50 mg kg(-1). Trace amounts of other elements (e.g., Co, Na, Ni, and Si) may be beneficial for plants. Silicon concentrations may range upwards to 50,000 mg kg(-1) in some forage grasses. Mineral elements required by animals include the macro-elements Ca, Cl, K, Mg, N, Na, P, and S; the trace or micro-elements Co, Cu, Fe, I, Mn, Mo, Se, and Zn; and the ultra-trace elements Cr, Li, and Ni. When concentrations of these elements in forages get 'out of whack' their bioavailability to animals may be jeopardized. Interactions of K x Mg x Ca, Ca x P, Se x S, and Cu x Mo x S are briefly mentioned here because more detail will be found in the literature. Limited published information is available on Si, so we have provided more detail. Silicon provides physical support to plants and may reduce susceptibility to pests. However, Si may have negative effects on digestibility and contribute to urinary calculi in animals.
    • Alkaloids as anti-quality factors in plants on western U.S. rangelands

      Pfister, J. A.; Panter, K. E.; Gardner, D. R.; Stegelmeier, B. L.; Ralphs, M. H.; Molyneux, R. J.; Lee, S. T. (Society for Range Management, 2001-07-01)
      Alkaloids constitute the largest class of plant secondary compounds, occurring in 20 to 30% of perennial herbaceous species in North America. Alkaloid-containing plants are of interest, first because alkaloids often have pronounced physiological reactions when ingested by livestock, and second because alkaloids have distinctive taste characteristics. Thus, alkaloids may kill, injure, or reduce productivity of livestock, and have the potential to directly or indirectly alter diet selection. We review 7 major categories of toxic alkaloids, including pyrrolizidine (e.g., Senecio), quinolizidine (e.g., Lupinus), indolizidine (e.g., Astragalus), diterpenoid (e.g., Delphinium), piperidine (e.g., Conium), pyridine (e.g., Nicotiana), and steroidal (Veratrum-type) alkaloids. Clinically, effects on animal production vary from minimal feed refusal to abortion, birth defects, wasting diseases, agalactia, and death. There are marked species differences in reactions to alkaloids. This has been attributed to rumen metabolism, alkaloid absorption, metabolism, excretion or directly related to their affinity to target tissues such as binding at receptor sites. In spite of alkaloids reputed bitter taste to livestock, some alkaloid-containing plant genera (e.g., Delphinium, Veratrum, Astragalus, Oxytropis, and Lupinus) are often readily ingested by livestock. Management schemes to prevent losses are usually based on recognizing the particular toxic plant, knowing the mechanism of toxicity, and understanding the temporal dynamics of plant alkaloid concentration and consumption by livestock. Once these aforementioned aspects are understood, losses may be reduced by maintaining optimal forage conditions, adjusting grazing pressure and timing of grazing, aversive conditioning, strategic supplementation, changing livestock species, and herbicidal control.
    • A proposed method for determining shrub utilization using (LA/LS) imagery

      Quilter, M. C.; Anderson, V. J. (Society for Range Management, 2001-07-01)
      Utilization of plant above ground biomass has continued to be a critical yet difficult assessment in rangeland monitoring. Shrub size and woody structure further compound the measurement of shrub biomass utilization. This study was designed to determine the potential utility of low altitude/large scale (LA/LS) imagery in assessing shrub utilization. A near monoculture of Ceriotoides lanata (Pursh) J.T. Howell (winterfat) located in the western desert shrubland of Utah was used to evaluate this technique. Four, 3.1 by 3.1 m plots were identified and the shrubs within the plots were defoliated by hand-picking at about 10% intervals with imagery of the plots obtained between pickings. Imagery was obtained using a radio controlled airplane (drone) fitted with a 35 mm camera. Images were evaluated using image processing software and the resulting reflectance data correlated with defoliation percentages (weight basis) for each plot. Reflectance data from images correlated highly with defoliation percentages (r2 > 0.9). This technique of using LA/LS imagery shows promise for a quick and accurate tool in assessing utilization of shrubs.
    • 'Immigrant' forage kochia seed viability as impacted by storage methods

      Stewart, A.; Anderson, V. J.; Kitchen, S. G. (Society for Range Management, 2001-07-01)
      'Immigrant' forage kochia (Kochia prostrata (L.) Schrad.) is a valuable introduced subshrub, often used in reclamation plantings and seedings on western rangelands. Seedling establishment is best from fresh seed; however, many users plant stored seed and experience poor seeding success. One cause for failure is loss of seed viability in storage. Forage kochia seed was harvested on 4 dates in fall 1996 from 2 sites (wildland and irrigated) and tested for viability when fresh and after storage treatments. Storage treatments included low and high seed water contents (2-6% and 12-16%), cold and warm storage temperatures (2 degrees and 25 degrees C), and duration of storage (4, 8, and 12 months). Mature, highly viable forage kochia seed remains viable in storage longer than seed harvested prematurely. Low seed water content (2-6%) is essential to preserving maximum seed viability. Storing seed at a cold temperature (2 degrees C) is also helpful in maintaining viability.