• Forage intake by beef steers grazing winter wheat with varied herbage allowances

      Redmon, L. A.; McCollum, F. T. III.; Horn, G. W.; Cravey, M. D.; Gunter, S. A.; Beck, P. A.; Mieres, J. M.; San Julian, R. (Society for Range Management, 1995-05-01)
      Two grazing trials were conducted in separate years on a 5.86 ha winter wheat (Triticum aestivum var. Chisholm) pasture divided into 10 experimental paddocks. Paddocks were differentially grazed with beef steers to produce an array of different herbage mass levels, expressed as kg dry matter (DM)/ha. Each experimental paddock was then continuously stocked with 3 beef steers during each 7-day forage intake trial. Daily forage intake, expressed as kg organic matter (OM)/100 kg body weight (BW), was estimated from fecal output (Cr2O3 dilution) of the beef steers and in vitro organic matter disappearance of esophageal masticate collected from each paddock. Estimated daily gain was calculated from forage intake and net energy values calculated from organic matter disappearance data. Forage intake, organic matter disappearance, and estimated daily gain were related to daily herbage allowance, expressed as kg DM 100 kg BW-1 day-1, and herbage mass utilizing a quadratic equation with a plateau function. As herbage allowance increased, organic matter disappearance improved (Y = 62.18 + 1.08 herbage allowance -.022 herbage allowance2; r2 = .64, MSE = 5.06) as did forage intake (Y = 1.3 + .12 herbage allowance -.003 herbage allowance2; r2 = .52, MSE = .07), and estimated daily gain (Y = -.059 + .12 herbage allowance -.003 herbage allowance2; r2 = 59, MSE = .07). Plateaus were achieved at herbage allowance between 20 to 24 kg DM 100 kg BW-1 day-1. Results of this study indicate forage intake and estimated daily gain declined severely as herbage allowance fell below 20 to 24 kg DM 100 kg BW-1 day-1. This data may provide a threshold herbage allowance for initiation of energy supplementation programs for growing cattle on wheat pasture.
    • Grain supplementation on bluestem range for intensive-early stocked steers

      Owensby, C. E.; Cochran, R. C.; Brandt, R. T.; Vanzant, E. S.; Auen, L. M.; Clary, E. M. (Society for Range Management, 1995-05-01)
      A 4-year study was conducted on Kansas Flint Hills bluestem range to monitor animal gain, grass, and forb standing biomass following grazing, plant population dynamics, and in 2 years, subsequent feedlot performance of steers under intensive-early stocking supplemented with increasing levels of sorghum grain. Each year from 1988 through 1991, crossbred beef steers were stocked at 0.24 ha/100 kg of initial steer weight from 5 May to 1; July. Steers in twice-replicated pastures were given no supplementation, 0.91 kg rolled sorghum grain per head daily, or 1.82 kg rolled sorghum grain per head daily, which corresponded to approximately 0, 0.3, and 0.6% of body weight-1. All steers were implanted with estradiol 17 beta in 1988 and zeranol in 1989-91 during initial processing and had unlimited access to a lasalocid/mineral mixture during the entire trial. In 1989 and 1990, representative groups of steers selected from all treatment/pasture combinations were subjected to a feedlot finishing phase and carcass data were obtained. Grass and forb standing crops were estimated each year at livestock removal in mid-July and again in early October. Pretreatment species composition and basal cover were determined in 1988 and compared to those at the end of the study. In mid-July, when cattle were removed, residual standing biomass of grass increased in direct proportion to increasing level of supplement. Standing biomass of grass at the end of the growing season did not differ among pastures with different supplement levels. Forb standing biomass did not differ among pastures with different supplement levels in July or October. Changes in plant populations among treatments during the course of the study were minimal. During the early portion of the grazing period, sorghum grain supplementation did not significantly influence steer gains, but average daily gain during the latter part of the grazing period increased in direct proportion to increasing level of sorghum grain supplement. Daily gain. feed intake, carcass characteristics, and gain:feed ratio were not different among treatments during the feedlot phase. Although conversion efficiencies may be economically marginal, low-level grain supplementation has the potential to increase the daily gain of cattle grazing early-season tallgrass prairie under an intensive-early stocking program.
    • Growth of winterfat following defoliation in Northern Mixed Prairie of Saskatchewan

      Romo, J. T.; Redmann, R. E.; Kowalenko, B. L.; Nicholson, A. R. (Society for Range Management, 1995-05-01)
      An observed increase in winterfat (Ceratoides lanata (Pursh) J.T. Howell) on ungrazed rangeland suggests that this shrub may potentially be an important forage resource in the Northern Mixed Prairie under improved grazing management. The objectives of this study were to: 1) compare density, frequency, and cover of winterfat in a grazed pasture and site that had been protected from grazing for about 30 years; and 2) evaluate regrowth of winterfat following defoliation during the growing season on a clayey range site in Saskatchewan. Density, frequency, canopy cover, and basal cover were significantly greater in the protected range than the grazed pasture. Density (1.1 SE +/- 0.01 plants m-2) and frequency (70% SE +/- 3.6) were about 2-fold greater, while canopy cover (7.0% SE +/- 1.4) and basal cover (1.7% SE +/- 1.5) were 7- to 8-fold greater, in the protected versus grazed range. When defoliated to a 5-cm stubble in May, June, or July plants produced significant amounts of regrowth but not when herbage was removed in August. When defoliated in late July or August current year production the following year was significantly lower than control and earlier defoliations. Current year production peaked in late July and August. Total standing crop was 2- to 4-fold greater in the control than the defoliation treatments because the biomass produced in previous years was removed from clipped plants. Because winterfat produces substantial amounts of new growth following defoliation in May, June, or July it is recommended that this shrub be grazed only once during the growing season to prevent grazing of this regrowth. Plants defoliated in May can potentially produce biomass equal to control the following year whereas plants defoliated in June, July, or August will likely require more than 1 year of rest to recover their annual productivity.
    • Herbage dynamics on 2 Northern Great Plains range sites

      Heitschmidt, R. K.; Grings, E. E.; Haferkamp, M. R.; Karl, M. G. (Society for Range Management, 1995-05-01)
      Quantity and quality of forage produced are primary determinants of level of livestock production derived from grazing lands. Moreover, species composition of herbage is often considered a primary determinant of the ecological condition of rangelands. The broad objective of this study was to quantify the productivity, growth dynamics, and quality of herbage growing on 2 Northern Great Plains range sites and to concurrently relate magnitude and composition of production to the ecological condition of the sites. Using frequent harvest techniques, the 2-year study showed herbage production on the highly productive silty range site averaged 219 g m-2 as compared to 218 g m-2 on the supposedly less productive clay pan range site. The primary reason the clay pan site proved to be as productive as the silty site was attributed to the greater amounts of introduced annual grasses on the clay pan (148 g m-2) than the silty site (104 g m-2). The annual grass component on the clay pan was a near equal mix (71 vs 51 g m-2) of Japanese brome (Bromus japonicus Thunb.) and cheatgrass (B. tectorum L.) whereas the overwhelming dominant on the silty site was cheatgrass (73 g m-2). Western wheatgrass [Pascopyrum smithii Rydh. (Love)] was the dominant perennial grass on both sites averaging 49 g m-2 on the clay pan site and 57 g m-2 on the silty site. There were minimal differences between sites in terms of nutrient quality values (i.e., crude protein, acid detergent fiber, neutral detergent fiber) with results showing clearly that age of tissue was the major factor altering seasonal forage quality values. Range condition analyses revealed the clay pan site was in fair ecological condition and the silty site was in good condition. Study results demonstrate the need for land management agencies to continue to refine productivity estimates as well as adopt new techniques for assessing the ecological condition of rangelands.
    • Livestock grazing impacts on interrill erosion in Pakistan

      Bari, F.; Wood, M. K.; Murray, L. (Society for Range Management, 1995-05-01)
      This study was conducted for 2 consecutive growing seasons in a temperate region of Pakistan to determine a residual phytomass level necessary to adequately protect the soil against accelerated interill erosion A rainfall simulator was used to apply rainfall to 48 (1 m square) circular plots arranged in a completely randomized experimental design, with 4 residual phytomass levels and 2 replications. The residual treatment with 3,024 kg ha-l phytomass resulted in the lowest erosion rates, and the treatment with 624 kg ha-l phytomass produced the highest erosion. Standing phytomass was the most important variable affecting erosion with foliar cover and basal cover also highly correlated to erosion.