• Genetic variability of Mg, Ca, and K in crested wheatgrass

      Mayland, H. F.; Asay, K. H. (Society for Range Management, 1989-03-01)
      Increasing available Mg in crested wheatgrass (Agropyron spp.) could reduce the incidence of grass tetany (hypomagnesemia) in ruminants grazing this forage. Raising the Mg levels might be done through genetic processes if enough variation in ion concentration existed in the Agropyrons. The purpose of this study was to determine the genetic variation in Mg, Ca, and K concentrations in 2 crested wheatgrass populations. Parent plants were vegetatively propagated to provide 6 replicates each of 12 clones of crested wheatgrass (A. desertorum) and 16 F3 clones of colchicine-induced tetraploid A. cristatum X natural tetraploid A. desertorum. Each plant was selected on a basis of seedling and mature plant vigor, forage, and seed yield, leafiness, resistance to pests, and response to environmental stress. The 2 populations were grown in separate, space-planted nurseries at Logan, Utah. Herbage was harvested at the pre-boot and early flowering stage in each of 2 years. Magnesium and Ca were determined by atomic absorption and K by flame emission. A reduced tetany potential (RTP) index for each clone was calculated as the sum of normalized Mg and (Ca+Mg)/K values. Significant (P < 0.01) differences for all traits were detected among clones in each population. All traits, except K and RTP, were closely correlated. Broad-sense heritability values for most traits ranged from 0.61 to 0.84. Enough genotypic variation existed in both populations to warrant breeding lines with higher concentrations of Mg and larger RTP values. Such changes could reduce the incidence of grass tetany in livestock grazing crested wheatgrass.