• Determination of root mass ratios in alfalfa-grass mixtures using near infrared reflectance spectroscopy

      Rumbaugh, M. D.; Clark, D. H.; Pendery, B. M. (Society for Range Management, 1988-11-01)
      Hand separation of roots of 2 or more plants species from soil cores is a tedious and labor-intensive task. Our objective was to determine whether near-infrared reflectance spectroscopy (NIRS) could be employed to estimate root biomass proportions in binary mixtures of alfalfa (Medicago sativa L.) with each of 4 grasses. Grasses chosen for experimentation were crested wheatgrass (Agropyron cristatum L.), intermediate wheatgrass [Thinopyrum intermedium (Host) Barkworth & D.R. Dewey], an intergeneric hybrid [Elytrigia repens (L.) Nevski × Pseudoroegneria spicata (Pursh) Love], and Russian wildrye [Psathyrostachys juncea (Fisch.) Nevski]. In the first experiment, roots from single-species field plots were washed from soil cores, dried, ground, and mechanically mixed in preselected alfalfa-grass ratios in which the percentage of grass varied from 0 to 100. Equations to measure the proportion of alfalfa or grass were developed from near infrared reflectance data using 84 randomly selected samples. In the second experiment, the 5 plant species were grown in greenhouse pots in pure stands and in binary mixtures that included all combinations of the grasses. Root systems were separated while attached to the topgrowth, dried, and ground. Tissues from single species treatments were mixed and calibration equations developed from these mixtures were used to estimate the proportion of alfalfa and the proportion of grass in samples. Samples contained either one type of root or a mixture of roots in proportions similar to those that occurred naturally in the pots. Coefficients of determination (r2) between the estimated and the actual root mass ratios ranged from 0.92 to 0.99. Determination of the proportion of grass in the samples was more accurate and precise than determination of the proportion of alfalfa. After the appropriate calibration equations have been developed, NIRS is more efficient than hand separation for estimating alfalfa-grass root mass ratios. The utility of the techniques can be increased by developing equations that encompass more complex mixtures and a wider range of environmental circumstances.
    • Effects of dormant-season herbage removal on Flint Hills rangeland

      Auen, L. M.; Owensby, C. E. (Society for Range Management, 1988-11-01)
      Stocking rate effects on intensive-early stocked Kansas Flint Hills range were studied from 1982 through 1987. Rates were 2X, 2.5X, and 3X normal season-long stocking rates for 200-225 kg steers. Study design was a randomized complete block with 2 replicates. Grass and forb standing crop (kg/ha) were estimated at the time of livestock removal (mid July) and again in early October. Plant basal cover and composition were taken in early June the year prior to the study and annually thereafter. Overall growing season precipitation during the study period was below normal, with late-summer precipitation much below normal in the second and third years of the study. Grass standing crop (GSC) in mid July decreased with increased stocking rate, but by early October GSC was similar under the 2.5X and 3X stocking rates, but continued to be lower than that under the 2X rate. There was no consistent response in mid July forb standing crop (FSC) with respect to stocking rate. In early October, FSC was either not affected by stocking rate (1983, 1986, and 1987) or was greater under the highest stocking rate (1982, 1984, and 1985). The major changes in botanical composition and basal cover were a reduction in Indiangrass (Sorghastrum nutans Nash) and an increase in Kentucky bluegrass (Poa pratensis L.) as stocking rate increased. Botanical composition of big bluestem (Andropogon gerardii Vitman) increased under the 2X rate but did not change under the higher rates. Individual steer gains were similar under the different stocking rates, but livestock breed appeared to affect magnitude of the gain. Since individual gains did not differ, gains per ha were substantially increased by the higher stocking rates.