• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Assessment of machine-learning techniques in predicting lithofluid facies logs in hydrocarbon wells

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    int-2018-0115.1.pdf
    Size:
    8.863Mb
    Format:
    PDF
    Description:
    Final Published Version
    Download
    Author
    Keynejad, Saba
    Sbar, Marc L.
    Johnson, Roy A.
    Affiliation
    Univ Arizona, Dept Geosci
    Issue Date
    2019-08
    
    Metadata
    Show full item record
    Publisher
    SOC EXPLORATION GEOPHYSICISTS
    Citation
    Keynejad, S., Sbar, M. L., & Johnson, R. A. (2019). Assessment of machine-learning techniques in predicting lithofluid facies logs in hydrocarbon wells. Interpretation, 7(3), SF1-SF13.
    Journal
    INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION
    Rights
    © 2019 Society of Exploration Geophysicists.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    Wireline log interpretation is a well-exercised procedure in the oil and gas industry with all its added value from exploration to production stages. It becomes even more important when it is one of only a few available alternatives to compensate for the lack of core samples in a study of lithologic and fluid variations in a well. Yet, as with other purely expert-oriented interpretational techniques, there is always a considerable risk of subjective or technical errors. We have adopted a hybrid approach that links a machine-learning (ML) algorithm to the log interpretation procedure to solve these problems. We have applied this approach to two different hydrocarbon (HC) fields with the aim of predicting the HC-bearing units in the form of lithofluid facies logs at different well locations. The values of these logs are labels of classes that are separated based on their lithologic and fluid content characteristics. After training different MLs on the designed lithofluid facies logs, we chose a bagged-tree algorithm to predict these logs for the target wells due to its superior performance. This algorithm predicted HC units in an accurate interval (above the HC-fluid contact depth), and it showed a very low false discovery rate. The high-accuracy rate, speed of analysis, and its generalization ability, even in data-deficient cases, accentuate why including ML algorithms can improve the understanding of the subsurface at every phase of the exploration and production process. The proposed approach of using ML algorithms, trained and tuned based on the expert's knowledge of the reservoir, can be modified and applied to future wells in a HC field to significantly minimize the risk of false HC discoveries.
    ISSN
    2324-8858
    EISSN
    2324-8866
    DOI
    10.1190/int-2018-0115.1
    Version
    Final published version
    ae974a485f413a2113503eed53cd6c53
    10.1190/int-2018-0115.1
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.