Show simple item record

dc.contributor.authorAbod, Charles P.
dc.contributor.authorSimon, Jacob B.
dc.contributor.authorLi, Rixin
dc.contributor.authorArmitage, Philip J.
dc.contributor.authorYoudin, Andrew N.
dc.contributor.authorKretke, Katherine A.
dc.date.accessioned2019-12-13T20:11:24Z
dc.date.available2019-12-13T20:11:24Z
dc.date.issued2019-10-04
dc.identifier.citationCharles P. Abod et al 2019 ApJ 883 192en_US
dc.identifier.issn0004-637X
dc.identifier.doi10.3847/1538-4357/ab40a3
dc.identifier.urihttp://hdl.handle.net/10150/636381
dc.description.abstractThe streaming instability concentrates solid particles in protoplanetary disks, leading to gravitational collapse into planetesimals. Despite its key role in producing particle clumping and determining critical length scales in the instability's linear regime, the influence of the disk's radial pressure gradient on planetesimal properties has not been examined in detail. Here, we use streaming instability simulations that include particle self-gravity to study how the planetesimal initial mass function depends on the radial pressure gradient. Fitting our results to a power law, dN/dM(p) proportional to M-p(-p), we find that a single value p approximate to 1.6 describes simulations in which the pressure gradient varies by greater than or similar to 2. An exponentially truncated power law provides a significantly better fit, with a low-mass slope of p' approximate to 1.3 that weakly depends on the pressure gradient. The characteristic truncation mass is found to be similar to M-G = 4 pi(5)G(2)Sigma(3)(p)/Omega(4). We exclude the cubic dependence of the characteristic mass with pressure gradient suggested by linear considerations, finding instead a linear scaling. These results strengthen the case for a streaming-derived initial mass function that depends at most weakly on the aerodynamic properties of the disk and participating solids. A simulation initialized with zero pressure gradient-which is not subject to the streaming instability-also yields a top-heavy mass function but with modest evidence for a different shape. We discuss the consistency of the theoretically predicted mass function with observations of Kuiper Belt planetesimals, and describe implications for models of early-stage planet formation.en_US
dc.language.isoenen_US
dc.publisherIOP PUBLISHING LTDen_US
dc.rightsCopyright © 2019. The American Astronomical Society. All rights reserved.en_US
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjecthydrodynamicsen_US
dc.subjectinstabilitiesen_US
dc.subjectplanets and satellites: formationen_US
dc.subjectprotoplanetary disksen_US
dc.subjectturbulenceen_US
dc.titleThe Mass and Size Distribution of Planetesimals Formed by the Streaming Instability. II. The Effect of the Radial Gas Pressure Gradienten_US
dc.typeArticleen_US
dc.contributor.departmentUniv Arizona, Dept Astronen_US
dc.contributor.departmentUniv Arizona, Steward Observen_US
dc.identifier.journalASTROPHYSICAL JOURNALen_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.eprint.versionFinal published versionen_US
dc.source.volume883
dc.source.issue2
dc.source.beginpage192
refterms.dateFOA2019-12-13T20:11:25Z


Files in this item

Thumbnail
Name:
Abod_2019_ApJ_883_192(1).pdf
Size:
1.675Mb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record