Optimization Difficulty Indicator and Testing Framework for Water Distribution Network Complexity
Affiliation
Univ Arizona, Dept Civil & Architectural Engn & MechIssue Date
2019-10-14
Metadata
Show full item recordPublisher
MDPICitation
Jung, D., Lee, S., & Hwang, H. (2019). Optimization Difficulty Indicator and Testing Framework for Water Distribution Network Complexity. Water, 11(10), 2132.Journal
WATERRights
Copyright © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
In the last three decades, benchmark water distribution networks (WDNs) have provided a common testbed for new optimization algorithms and design approaches. However, deriving generalized and reliable conclusions from such benchmark WDNs is difficult because their optimization difficulty levels (ODLs) are either too low or too high (i.e., biased). Final solutions do not consistently converge to a global optimum for a WDN problem with a high ODL. In addition, little effort has been given to quantifying and comparing the ODLs of WDNs with different characteristics and conditions. In this study, an ODL indicator was developed for WDNs: the coefficient of variation of the final solution fitness values. An ODL quantification framework was also developed with two phases: (1) generating network layouts with various topological characteristics, and (2) quantifying the statistics of the final solution quality and ODL by using a global parallel genetic algorithm. The proposed indicator and framework were applied to the design of a dense-grid B-city network and large C network, and the results demonstrated their applicability to generating a WDN benchmark problem with the target ODL.Note
Open access journalISSN
2073-4441Version
Final published versionSponsors
Keimyung Universityae974a485f413a2113503eed53cd6c53
10.3390/w11102132
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).