High Power Single-Frequency 976 nm Fiber Laser Source and its Frequency Doubling for Blue Laser Generation
Author
Wu, JingweiIssue Date
2019Advisor
Peyghambarian, NasserZhu, Xiushan
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
High power compact and robust single-frequency all-fiber laser sources operating at 9xx nm have attracted significant attention because they can be used in a variety of applications including high-brightness low-noise single-mode pumps for neodymium (Nd3+), ytterbium (Yb3+), or erbium (Er3+)-doped lasers and nonlinear frequency converters for visible and deep-UV laser generation, atom cooling, remote sensing, and spectroscopy. So far, several 100-W-level fiber laser sources operating at around 980 nm have been demonstrated with Yb3+-doped photonic crystal fibers. However, all these laser sources have broad bandwidths, which constrain their use in many applications where single-frequency lasers with very narrow linewidths and very low noises are required. High power single-frequency fiber lasers are generally achieved with master oscillator and power amplifier (MOPA). In this dissertation, single-frequency Yb3+-doped silica and phosphate fiber amplifiers at 976 nm were investigated and the obstacles to develop high power 976 nm fiber amplifiers were studied and analyzed. A power-scalable 976 nm single-frequency MOPA laser source was developed by using a custom-designed large-mode-area Yb3+-doped phosphate fiber for the second stage amplifier and over 10 W continuous-wave output with a polarization extinction ratio of 20 dB was obtained. Further power scaling of the 976 nm fiber amplifiers has been discussed. The frequency doubling of the 976 nm single-frequency fiber laser was also demonstrated with a magnesium-doped periodically-poled lithium niobate (MgO:PPLN) crystal and over 500 mW single-frequency laser at 488 nm was obtained with single-pass second harmonic generation.Type
textElectronic Dissertation
Degree Name
Ph.D.Degree Level
doctoralDegree Program
Graduate CollegeOptical Sciences