• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Advancing Asteroid Surface Exploration Using Sublimate-Based Regenerative Micropropulsion And 3D Path Planning

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_17691_sip1_m.pdf
    Size:
    3.618Mb
    Format:
    PDF
    Download
    Author
    Wilburn, Greg
    Issue Date
    2019
    Keywords
    CubeSats
    MEMS
    micropropulsion
    optimization
    Advisor
    Thangavelauthum, Jekan
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The advancement of asteroidal surface science necessitates in-situ science collection by robotic landers. The Asteroid Mobile Imager and Geologic Observer (AMIGO) is a conceptualized surface hopping robot relying on miniaturization of avionics, structures, and science equipment to accompany a larger “mothership” type orbiter for surface measurements. The scientific rationale for asteroid surface characterization is explored. Ideally, mobility facilitates more robust data collection from a range of areas on the asteroid surface with fewer robots for maximum coverage. As evidenced by images from asteroid visiting spacecraft, recently Hayabusa II and OSIRIS-Rex, “rock gardens” on asteroid surfaces provide uneven and obstructed terrain from boulders and piles of dust. Two enabling technologies are developed for the CubeSat class AMIGO hopping robot. Hopping is enabled by a high-level path planning algorithm is developed by using a stereo camera that outputs both color images and a depth map for obstruction detection. The depth map allows for objects and adverse terrain to be detected and avoided for safer mobility. The surface boulders present difficulties in both line of site to other areas of the asteroid and in landing safely. These large obstructions and dramatic topology of asteroids reduces the robot’s visibility range and navigating around them provides new scenes to examine. The boulders should also be avoided when hopping such that they do not damage the robot or cause it to tip over to a state where data cannot be collected. Imaging from these new locations and headings can be used to construct surface level maps of the terrain and gather information on boulder distribution. The avoidance algorithm is evaluated on a test model of AMIGO with representative avionics and structure by hopping multiple times to avoid obstacles. The other technology is a micropropulsion system based on cold-gas and microelectromechanical systems (MEMS) technology to provide both lift-off hopping actuation and 2-axis attitude control during a quasi-ballistic, open loop trajectory to a target destination. Hopping from the propulsion system allows the robot to traverse the rough terrain to an area deemed interesting or safe from the hop selection algorithm. The design methodology for the micronozzles and two control valves are shown. Micronozzles are optimized in a quasi-isentropic analysis and compared to computational fluid dynamics simulations.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Aerospace Engineering
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.