• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A Framework for Secure Data Management in Medical Devices

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_17670_sip1_m.pdf
    Size:
    5.005Mb
    Format:
    PDF
    Download
    Author
    Almazyad, Ibrahim
    Issue Date
    2019
    Keywords
    Autonomous secure communication
    IMD communication
    Implantable Medical Device
    Insulin pump
    Medical devices security
    Priority-Based Queue
    Advisor
    Rozenblit, Jersy W.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release after 07/03/2020
    Abstract
    Data is considered as a valuable currency that our modern world thrives upon today. Individuals, groups and even nations work hand in hand to protect private data. When it comes to medical data, its protection is considerably more apparent and significant with guidelines such as HIPAA and FDA regulations in place. Data breaches on medical devices are known to have a significant impact on a patient’s wellbeing. Most of these data breach attacks occur during the transit state. With these attacks in mind, there is still a need for continuous feedback between a patient and a doctor based on data that is collected from such devices. In this thesis, we propose a methodology that develops an autonomous secure communication channel between doctors and patients. Through examining the data life cycle of software built within medical devices, we address various security measures. We propose Adaptive Mode Selection (AMS) to investigate threats amongst system functions. By leveraging this technique, we obtain access to a lifetime assessment for risk mitigation and communication mode selection within medical devices. A Priority-Queue Based (PQB) process is established to improve data management and data isolation within life-critical systems. Further, we propose Adaptive Protocol Selection (APS) to enhance data transmission over the most appropriate communication protocol based on risk values identified by AMS. These protocols include Wi-Fi, Bluetooth, Radio Frequency or more. The combination of AMS, PQB and APS contributes towards delivering better health services with continuous secured data feeds and reduction in time of medical intervention.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Electrical & Computer Engineering
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.