Within-host infectious disease models accommodating cellular coinfection, with an application to influenza
Affiliation
Univ Arizona, Dept MathIssue Date
2019-07-08Keywords
cellular coinfectioninfluenza virus
macroparasite model
viral complementation
within-host dynamics
Metadata
Show full item recordPublisher
OXFORD UNIV PRESSCitation
Katia Koelle, Alex P Farrell, Christopher B Brooke, Ruian Ke, Within-host infectious disease models accommodating cellular coinfection, with an application to influenza, Virus Evolution, Volume 5, Issue 2, July 2019, vez018, https://doi.org/10.1093/ve/vez018Journal
VIRUS EVOLUTIONRights
Copyright © The Author(s) 2019. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/).Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Within-host models are useful tools for understanding the processes regulating viral load dynamics. While existing models have considered a wide range of within-host processes, at their core these models have shown remarkable structural similarity. Specifically, the structure of these models generally consider target cells to be either uninfected or infected, with the possibility of accommodating further resolution (e.g. cells that are in an eclipse phase). Recent findings, however, indicate that cellular coinfection is the norm rather than the exception for many viral infectious diseases, and that cells with high multiplicity of infection are present over at least some duration of an infection. The reality of these cellular coinfection dynamics is not accommodated in current within-host models although it may be critical for understanding within-host dynamics. This is particularly the case if multiplicity of infection impacts infected cell phenotypes such as their death rate and their viral production rates. Here, we present a new class of within-host disease models that allow for cellular coinfection in a scalable manner by retaining the low-dimensionality that is a desirable feature of many current within-host models. The models we propose adopt the general structure of epidemiological 'macroparasite' models that allow hosts to be variably infected by parasites such as nematodes and host phenotypes to flexibly depend on parasite burden. Specifically, our within-host models consider target cells as 'hosts' and viral particles as 'macroparasites', and allow viral output and infected cell lifespans, among other phenotypes, to depend on a cell's multiplicity of infection. We show with an application to influenza that these models can be statistically fit to viral load and other within-host data, and demonstrate using model selection approaches that they have the ability to outperform traditional within-host viral dynamic models. Important in vivo quantities such as the mean multiplicity of cellular infection and time-evolving reassortant frequencies can also be quantified in a straightforward manner once these macroparasite models have been parameterized. The within-host model structure we develop here provides a mathematical way forward to address questions related to the roles of cellular coinfection, collective viral interactions, and viral complementation in within-host viral dynamics and evolution.Note
Open access journalISSN
2057-1577PubMed ID
31304043Version
Final published versionSponsors
DARPA INTERCEPT [W911NF-17-2-0034]; MIDAS CIDID Center of Excellence [U54-GM111274]ae974a485f413a2113503eed53cd6c53
10.1093/ve/vez018
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright © The Author(s) 2019. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/).
Related articles
- Fitness Estimation for Viral Variants in the Context of Cellular Coinfection.
- Authors: Zhu H, Allman BE, Koelle K
- Issue date: 2021 Jun 23
- Semi-infectious particles contribute substantially to influenza virus within-host dynamics when infection is dominated by spatial structure.
- Authors: Farrell A, Phan T, Brooke CB, Koelle K, Ke R
- Issue date: 2023
- Evolution of virulence: a unified framework for coinfection and superinfection.
- Authors: Mosquera J, Adler FR
- Issue date: 1998 Dec 7
- The Multiplicity of Cellular Infection Changes Depending on the Route of Cell Infection in a Plant Virus.
- Authors: Gutiérrez S, Pirolles E, Yvon M, Baecker V, Michalakis Y, Blanc S
- Issue date: 2015 Sep
- Coinfection With Influenza A Virus and Klebsiella oxytoca: An Underrecognized Impact on Host Resistance and Tolerance to Pulmonary Infections.
- Authors: Lee KM, Morris-Love J, Cabral DJ, Belenky P, Opal SM, Jamieson AM
- Issue date: 2018