GPx3 supports ovarian cancer progression by manipulating the extracellular redox environment
Name:
1-s2.0-S2213231718308917-main.pdf
Size:
4.318Mb
Format:
PDF
Description:
Final Published Version
Author
Worley, Beth LKim, Yeon Soo
Mardini, Jennifer
Zaman, Rameez
Leon, Kelly E
Vallur, Piyushi Gupta
Nduwumwami, Asvelt
Warrick, Joshua I
Timmins, Patrick F
Kesterson, Joshua P
Phaëton, Rébécca
Lee, Nam Y
Walter, Vonn
Endres, Lauren
Mythreye, Karthikeyan
Aird, Katherine M
Hempel, Nadine
Affiliation
Univ Arizona, Coll Med, Dept PharmacolIssue Date
2018-11-17
Metadata
Show full item recordPublisher
ELSEVIERCitation
Worley, B. L., Kim, Y. S., Mardini, J., Zaman, R., Leon, K. E., Vallur, P. G., … Hempel, N. (2019). GPx3 supports ovarian cancer progression by manipulating the extracellular redox environment. Redox Biology, 25, 101051. https://doi.org/10.1016/j.redox.2018.11.009 Journal
REDOX BIOLOGYRights
Copyright © 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).T.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Ovarian cancer remains the most lethal gynecologic malignancy, and is primarily diagnosed at late stage when considerable metastasis has occurred in the peritoneal cavity. At late stage abdominal cavity ascites accumulation provides a tumor-supporting medium in which cancer cells gain access to growth factors and cytokines that promote survival and metastasis. However, little is known about the redox status of ascites, or whether antioxidant enzymes are required to support ovarian cancer survival during transcoelomic metastasis in this medium. Gene expression cluster analysis of antioxidant enzymes identified two distinct populations of high-grade serous adenocarcinomas (HGSA), the most common ovarian cancer subtype, which specifically separated into clusters based on glutathione peroxidase 3 (GPx3) expression. High GPx3 expression was associated with poorer overall patient survival and increased tumor stage. GPx3 is an extracellular glutathione peroxidase with reported dichotomous roles in cancer. To further examine a potential pro-tumorigenic role of GPx3 in HGSA, stable OVCAR3 GPx3 knock-down cell lines were generated using lentiviral shRNA constructs. Decreased GPx3 expression inhibited clonogenicity and anchorage-independent cell survival. Moreover, GPx3 was necessary for protecting cells from exogenous oxidant insult, as demonstrated by treatment with high dose ascorbate. This cytoprotective effect was shown to be due to GPx3-dependent removal of extracellular H2O2. Importantly, GPx3 was necessary for clonogenic survival when cells were cultured in patient-derived ascites fluid. While oxidation reduction potential (ORP) of malignant ascites was heterogeneous in our patient cohort, and correlated positively with ascites iron content, GPx3 was required for optimal survival regardless of ORP or iron content. Collectively, our data suggest that HGSA ovarian cancers cluster into distinct groups of high and low GPx3 expression. GPx3 is necessary for HGSA ovarian cancer cellular survival in the ascites tumor environment and protects against extracellular sources of oxidative stress, implicating GPx3 as an important adaptation for transcoelomic metastasis.Note
Open access journalISSN
2213-2317PubMed ID
30509602Version
Final published versionSponsors
Rivkin Center for Ovarian Cancer, Seattle, WA (Pilot Award); Office of the Assistant Secretary of Defense for Health Affairs, through the Ovarian Cancer Research Program [W81XWH-16-1-0117]ae974a485f413a2113503eed53cd6c53
10.1016/j.redox.2018.11.009
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright © 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).T.
Related articles
- GPX3 supports ovarian cancer tumor progression in vivo and promotes expression of GDF15.
- Authors: Chang C, Cheng YY, Kamlapurkar S, White S, Tang PW, Elhaw AT, Javed Z, Aird KM, Mythreye K, Phaëton R, Hempel N
- Issue date: 2024 Jun
- GPX3 supports ovarian cancer tumor progression in vivo and promotes expression of GDF15.
- Authors: Chang C, Cheng YY, Kamlapurkar S, White SR, Tang PW, Elhaw AT, Javed Z, Aird KM, Mythreye K, Phaëton R, Hempel N
- Issue date: 2024 Jan 29
- Extracellular Glutathione Peroxidase GPx3 and Its Role in Cancer.
- Authors: Chang C, Worley BL, Phaëton R, Hempel N
- Issue date: 2020 Aug 6
- Immunohistochemical evidence for the over-expression of Glutathione peroxidase 3 in clear cell type ovarian adenocarcinoma.
- Authors: Lee HJ, Do JH, Bae S, Yang S, Zhang X, Lee A, Choi YJ, Park DC, Ahn WS
- Issue date: 2011 Dec
- GPx3-mediated redox signaling arrests the cell cycle and acts as a tumor suppressor in lung cancer cell lines.
- Authors: An BC, Choi YD, Oh IJ, Kim JH, Park JI, Lee SW
- Issue date: 2018