Process Modeling of Forward Osmosis and Pressure Retarded Osmosis Integration with Seawater Reverse Osmosis
Author
Binger, ZacharyIssue Date
2020Keywords
forward osmosismembrane module
pressure retarded osmosis
process modeling
reverse osmosis
seawater desalination
Advisor
Achilli, Andrea
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
Osmotically driven membrane processes, like forward osmosis and pressure retarded osmosis, may hold key advantages when integrated with reverse osmosis for seawater desalination. The spiral-wound membrane platform in which these processes are applied has inherent disadvantages that need to be explored. Maintaining proper operating pressure in both of the fluid channels of a spiral-wound membrane requires the feed and draw streams to be operated at different flow rates, often as drastic as a 1:10 ratio. This affects the thermodynamic equilibrium of the system and drastically affects potential water and energy recovery. In this work, a model was created to rigorously represent spiral-wound membranes to increase modeling accuracy. A process configuration that features periodic recharging of the stream inside of the envelope is proposed to mitigate the effects of the flow rate difference. The model is used to compare the multi-stage design to single-stage configurations for both forward osmosis and pressure retarded osmosis by testing various feed and draw flow rate ratios, between 1:10 to 1:1, operated by each process as well as important membrane characteristics such as channel height and water and salt permeability. The multi-stage design shows an increase in wastewater utilization from 62.6% to 90% when compared to the single-stage designs for forward osmosis. Additionally, the multi-stage configuration increases the pressure retarded osmosis specific energy recovery from 0.13 kWh/m3 to 0.55 kWh/m3. However, the increased effectiveness of these multi-staged designs comes with a reduction in average water flux and power density, which leads to the requirement of more membrane area and capital investment for potential system implementation.Type
textElectronic Thesis
Degree Name
M.S.Degree Level
mastersDegree Program
Graduate CollegeChemical Engineering
Degree Grantor
University of ArizonaCollections
Related items
Showing items related by title, author, creator and subject.
-
Forward osmosis and pressure retarded osmosis process modeling for integration with seawater reverse osmosis desalinationBinger, Zachary M.; Achilli, Andrea; Univ Arizona, Dept Chem & Environm Engn (ELSEVIER, 2020-10)Osmotically driven membrane processes such as forward osmosis and pressure retarded osmosis may hold key advantages when integrated with seawater reverse osmosis to form hybrid FO-RO and RO-PRO systems. In this work, module-scale modeling of these two processes was improved by accurately representing the features of a spiral-wound membrane. The model captures important characteristics such as the cross-flow stream orientation, membrane baffling, and channel dimensions unique to spiral-wound membranes. The new module-scale model was then scaled to the system-level to compare various system designs for FO-RO and RO-PRO systems, most notably, a multi-stage recharge design was defined. Results indicate that the multi-stage recharge design leads to an increase in wastewater utilization, as high as 90%, when compared to the single-stage designs. Additionally, the multi-stage recharge configuration can increase the specific energy recovery of pressure retarded osmosis by over 75%. The multi-stage recharge design is found to be not only advantageous but may be also necessary to the integration of osmotically driven membrane processes with seawater reverse osmosis.
-
Use of Reverse Osmosis to Increase the Brix Content of Sweet Sorghum Sugar SolutionLivingston, Peter; Slack, Donald; Ahrensdorf, Taylor Jay; Hodeaux, Jacob Michael; Hottenstein, John David (The University of Arizona., 2014)
-
Application of Direct Osmosis: Possibilities for Reclaiming Wellton-Mohawk Drainage WaterMoody, C. D.; Kessler, J. O.; School of Renewable Resources, University of Arizona, Tucson; Department of Physics, University of Arizona, Tucson (Arizona-Nevada Academy of Science, 1975-04-12)A direct osmosis plant can reclaim twenty to thirty thousand acre feet of Wellton-Mohawk brackish drainage water using no more nitrogen fertilizer than is normally used in the Yuma, Coachella valley, Imperial Valley and the bordering Mexican areas. On a per-acre basis ammonium sulfate-driven direct osmosis can reclaim about one percent of the total irrigation requirement from 3000 ppm brackish water. In addition to the ammonium sulfate-driven direct osmosis efficiency, the by-product energy recovery of the manufacture of the fertilizer and the low technology inherent in direct osmosis processes make direct osmosis an appealing water reclaiming process.