• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A Framework for Automatic Dynamic Constraint Verification in Cyber Physical System Modeling Languages

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_17725_sip1_m.pdf
    Size:
    6.237Mb
    Format:
    PDF
    Download
    Author
    Bunting, Matt Robert
    Issue Date
    2020
    Keywords
    Control Systems
    Cyber-Physical Systems
    Domain-Specific Modeling
    Metamodel
    Model Based Engineering
    Advisor
    Sprinkle, Jonathan M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Design of Cyber-Physical Systems (CPSs) involves overlapping the domains of control theory, network communication, and computational algorithms. Involving multiple domains within the same design greatly increases the system complexity. Furthermore, the physical nature of CPSs generally involves important safety constraints where constraint violations can be catastrophic. The design of CPSs benefits from focusing on the construction of abstracted, high-level models in a DomainSpecific Modeling Language (DSML). A Domain-Specific Modeling Environment (DSME) may aid in the design of such complex systems by enforcing structural design constraints during the construction of models. Models built using a DSME may also use compilers or interpreters to produce real working, low-level artifacts that represent the high-level design. Though each model in a DSME may abide by a formal specification, the behavior of a design may violate dynamic constraints if deployed. Engineers are tasked to ensure that models behave safely by implementing their expert knowledge after using appropriate verification tools. Constraint violations may be eliminated by a modification of the model based on verification feedback, known as Dynamic Constraint Feedback (DCF). Mending such constraint violations is a task generally performed by the model designer. Such a process could potentially be automated through the capture of well-known design practices. The challenging task when automating model correction then becomes in the design of a DSML. A designer of a DSML may have a clear understanding of how to design the syntax and semantics for their domain, but there are no formal methods for implementing verification tools for automatic model correction. Such a framework could greatly aid in the selection of available verification tools, implement well-established design methods, and model dynamic constraints. Presented is the Dynamic Constraint Feedback Metamodeling Language (DCFML), a new metamodel to implement DCF upfront in DSML design. This particular solution provides a concrete solution to the abstraction of the various components of DCF, and then appends them to the DSML design process provided by a DSME.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Electrical & Computer Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.