• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Optogenetic Manipulation of Posterior Caudatoputamen Indirect Pathway Neurons Causes Auditory Cortical Activation in Rats

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_17748_sip1_m.pdf
    Size:
    1.526Mb
    Format:
    PDF
    Download
    Author
    Yellowman, Zachary George
    Issue Date
    2020
    Keywords
    Auditory Hallucination
    Caudatoputamen
    D2 Receptor
    Dopamine
    Indirect pathway
    Rat
    Advisor
    Hammer, Ronald P.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Auditory hallucinations are prevalent in many neuropsychiatric disorders and are also a cardinal symptom of schizophrenia. Most research on the mechanism of auditory hallucinations has focused on functional imaging of the auditory cortex. Recent research has revealed structural and functional interaction between the striatum and the neocortex. Previous studies in our laboratory have shown that dopamine infusion into the posterior caudatoputamen (CPu), the “auditory striatum,” produce activation of the rat auditory cortex. To establish the next projection site from these neurons, we virally infused an anterograde AAV-GFP into this region of the auditory striatum which resulted in expression mainly at the same rostral-caudal level of the lateral globus pallidus (LGP) as the infusion site. Since antipsychotic drugs target D2 dopamine receptors on neurons of the indirect pathway (CPu-LGP) to alleviate psychotic symptoms, we transfected terminals in the LGP with a retrograde AAV-Jaws-GFP to neuroanatomically discriminate the indirect pathway. Inactivation of the striatal indirect pathway neurons with Jaws stimulation resulted in significant activation of the auditory cortex via c-Fos expression. Conversely, activation of these same striatal indirect pathway neurons with stimulation of ChannelRhodopsin-2 (ChR2) showed no significant change in auditory cortex activation. The results of these studies will elucidate a potential alternative neural circuit mechanism underlying the pathophysiology of auditory hallucinations in neuropsychiatric disorders.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Clinical Translational Sciences
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.